Machine learning and prediction study on heat transfer of supercritical CO2 in pseudo-critical zone

超临界流体 传热 材料科学 工艺工程 机械工程 石油工程 环境科学 工程类 热力学 物理
作者
Zhe-Xi Wen,Jingxiang Wu,Xinde Cao,Jiaqi Cheng,Shuaishuai Wang,Qing Li
出处
期刊:Applied Thermal Engineering [Elsevier]
卷期号:: 122630-122630 被引量:1
标识
DOI:10.1016/j.applthermaleng.2024.122630
摘要

The utilization of supercritical carbon dioxide(S-CO2) as a working fluid in energy conversion systems has gained widespread recognition as an efficient and environmentally friendly option. However, accurately predicting the heat transfer process is still challenging due to the significant variation of thermophysical properties within the pseudo-critical zone. The accurate prediction of the S-CO2 heat transfer process is of utmost importance for the design of heat exchangers and the safe operation of the system. Aiming at the current problems of high experimental cost and long numerical simulation time, machine learning is adopted in this paper to predict the heat transfer characteristics of S-CO2 in this temperature region. In this paper, the heat transfer process of S-CO2 flowing upward in a circular tube under heating conditions is taken as the research object, and a total of 11,032 sets of experimental data samples in the open literature are collected. Four machine learning models, namely, Random Forest (RF), Extreme Gradient Boosting (XGBoost), Support Vector Machines (SVR), and Artificial Neural Networks (ANN) are trained by taking mass flow rate, wall heat flux, pressure, fluid enthalpy, and tube diameter as the input parameters, and wall temperature as the output parameter. The prediction performance of the four machine learning models and the heat transfer correlations were compared. The results show that all four machine learning models have excellent prediction performance, and the ANN model provides the best prediction performance, with an R2 of 0.995 on new data. XGboost and ANN can accurately predict the heat transfer deterioration when the fluid temperature (Tb) approaches the pseudo-critical temperature (Tpc) or over Tpc, yet the accuracy decreases in the region of Tb < Tpc, suggesting that the prediction error is mainly originated in this region. Compared with the existing heat transfer correlations, the prediction accuracy of the ANN model obtained from the training in this paper is higher. The present study further elucidated the feasibility and accuracy of utilizing an ANN model for predicting the S-CO2 heat transfer process. A trained ANN model is a useful tool that can be directly applied to system design and heat exchanger design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LT完成签到,获得积分10
刚刚
含蓄灵薇完成签到 ,获得积分10
刚刚
zhengzehong完成签到,获得积分10
1秒前
1秒前
稻草人完成签到 ,获得积分10
3秒前
zho发布了新的文献求助30
4秒前
4秒前
cc只会嘻嘻完成签到 ,获得积分10
4秒前
zink驳回了ding应助
4秒前
习习发布了新的文献求助10
4秒前
经法发布了新的文献求助10
5秒前
5秒前
5秒前
tong完成签到,获得积分10
5秒前
L~完成签到,获得积分10
5秒前
kyokukou完成签到,获得积分10
5秒前
xiaofeiyu完成签到,获得积分10
5秒前
大力曲奇完成签到,获得积分10
6秒前
乐乐应助崔梦楠采纳,获得10
6秒前
6秒前
6秒前
无奈梦岚完成签到,获得积分10
6秒前
yug发布了新的文献求助10
6秒前
蒋时晏完成签到,获得积分0
7秒前
JamesPei应助zz采纳,获得10
7秒前
MADKAI发布了新的文献求助10
7秒前
7秒前
脑洞疼应助Leexxxhaoo采纳,获得10
8秒前
8秒前
8秒前
RC_Wang应助东东采纳,获得10
8秒前
大脸妹发布了新的文献求助10
8秒前
两张发布了新的文献求助10
9秒前
9秒前
Akim应助执着的小蘑菇采纳,获得10
9秒前
调研昵称发布了新的文献求助10
9秒前
念念发布了新的文献求助10
10秒前
畅快的鱼发布了新的文献求助10
10秒前
搞怪藏今完成签到 ,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678