Machine learning and prediction study on heat transfer of supercritical CO2 in pseudo-critical zone

超临界流体 传热 材料科学 工艺工程 机械工程 石油工程 环境科学 工程类 热力学 物理
作者
Zhe-Xi Wen,Jingxiang Wu,Xinde Cao,Jiaqi Cheng,Shuaishuai Wang,Qing Li
出处
期刊:Applied Thermal Engineering [Elsevier BV]
卷期号:: 122630-122630 被引量:1
标识
DOI:10.1016/j.applthermaleng.2024.122630
摘要

The utilization of supercritical carbon dioxide(S-CO2) as a working fluid in energy conversion systems has gained widespread recognition as an efficient and environmentally friendly option. However, accurately predicting the heat transfer process is still challenging due to the significant variation of thermophysical properties within the pseudo-critical zone. The accurate prediction of the S-CO2 heat transfer process is of utmost importance for the design of heat exchangers and the safe operation of the system. Aiming at the current problems of high experimental cost and long numerical simulation time, machine learning is adopted in this paper to predict the heat transfer characteristics of S-CO2 in this temperature region. In this paper, the heat transfer process of S-CO2 flowing upward in a circular tube under heating conditions is taken as the research object, and a total of 11,032 sets of experimental data samples in the open literature are collected. Four machine learning models, namely, Random Forest (RF), Extreme Gradient Boosting (XGBoost), Support Vector Machines (SVR), and Artificial Neural Networks (ANN) are trained by taking mass flow rate, wall heat flux, pressure, fluid enthalpy, and tube diameter as the input parameters, and wall temperature as the output parameter. The prediction performance of the four machine learning models and the heat transfer correlations were compared. The results show that all four machine learning models have excellent prediction performance, and the ANN model provides the best prediction performance, with an R2 of 0.995 on new data. XGboost and ANN can accurately predict the heat transfer deterioration when the fluid temperature (Tb) approaches the pseudo-critical temperature (Tpc) or over Tpc, yet the accuracy decreases in the region of Tb < Tpc, suggesting that the prediction error is mainly originated in this region. Compared with the existing heat transfer correlations, the prediction accuracy of the ANN model obtained from the training in this paper is higher. The present study further elucidated the feasibility and accuracy of utilizing an ANN model for predicting the S-CO2 heat transfer process. A trained ANN model is a useful tool that can be directly applied to system design and heat exchanger design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
melon完成签到,获得积分10
2秒前
reds发布了新的文献求助10
2秒前
000发布了新的文献求助10
3秒前
大个应助啦啦啦采纳,获得30
4秒前
4秒前
Revie发布了新的文献求助10
4秒前
5秒前
混子完成签到,获得积分10
5秒前
李可爱发布了新的文献求助10
7秒前
8秒前
wy完成签到,获得积分10
9秒前
10秒前
香蕉觅云应助雪雪儿采纳,获得10
11秒前
彭于晏应助悲凉的妙松采纳,获得10
13秒前
14秒前
15秒前
15秒前
15秒前
16秒前
16秒前
16秒前
Alexander完成签到,获得积分20
16秒前
蒲云海发布了新的文献求助10
18秒前
李健应助哦啦啦采纳,获得10
18秒前
田様应助哦啦啦采纳,获得10
18秒前
SciGPT应助Allonz采纳,获得10
18秒前
啦啦啦发布了新的文献求助30
20秒前
小篮子发布了新的文献求助10
20秒前
21秒前
21秒前
21秒前
21秒前
22秒前
22秒前
22秒前
23秒前
23秒前
金鑫水淼发布了新的文献求助10
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952555
求助须知:如何正确求助?哪些是违规求助? 3498015
关于积分的说明 11089696
捐赠科研通 3228463
什么是DOI,文献DOI怎么找? 1784978
邀请新用户注册赠送积分活动 869059
科研通“疑难数据库(出版商)”最低求助积分说明 801309