Machine learning and prediction study on heat transfer of supercritical CO2 in pseudo-critical zone

超临界流体 传热 材料科学 工艺工程 机械工程 石油工程 环境科学 工程类 热力学 物理
作者
Zhe-Xi Wen,Jingxiang Wu,Xinde Cao,Jiaqi Cheng,Shuaishuai Wang,Qing Li
出处
期刊:Applied Thermal Engineering [Elsevier]
卷期号:: 122630-122630 被引量:1
标识
DOI:10.1016/j.applthermaleng.2024.122630
摘要

The utilization of supercritical carbon dioxide(S-CO2) as a working fluid in energy conversion systems has gained widespread recognition as an efficient and environmentally friendly option. However, accurately predicting the heat transfer process is still challenging due to the significant variation of thermophysical properties within the pseudo-critical zone. The accurate prediction of the S-CO2 heat transfer process is of utmost importance for the design of heat exchangers and the safe operation of the system. Aiming at the current problems of high experimental cost and long numerical simulation time, machine learning is adopted in this paper to predict the heat transfer characteristics of S-CO2 in this temperature region. In this paper, the heat transfer process of S-CO2 flowing upward in a circular tube under heating conditions is taken as the research object, and a total of 11,032 sets of experimental data samples in the open literature are collected. Four machine learning models, namely, Random Forest (RF), Extreme Gradient Boosting (XGBoost), Support Vector Machines (SVR), and Artificial Neural Networks (ANN) are trained by taking mass flow rate, wall heat flux, pressure, fluid enthalpy, and tube diameter as the input parameters, and wall temperature as the output parameter. The prediction performance of the four machine learning models and the heat transfer correlations were compared. The results show that all four machine learning models have excellent prediction performance, and the ANN model provides the best prediction performance, with an R2 of 0.995 on new data. XGboost and ANN can accurately predict the heat transfer deterioration when the fluid temperature (Tb) approaches the pseudo-critical temperature (Tpc) or over Tpc, yet the accuracy decreases in the region of Tb < Tpc, suggesting that the prediction error is mainly originated in this region. Compared with the existing heat transfer correlations, the prediction accuracy of the ANN model obtained from the training in this paper is higher. The present study further elucidated the feasibility and accuracy of utilizing an ANN model for predicting the S-CO2 heat transfer process. A trained ANN model is a useful tool that can be directly applied to system design and heat exchanger design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助凉拌折耳根采纳,获得10
刚刚
刘唐荣发布了新的文献求助10
刚刚
Jasper应助美丽的夜玉采纳,获得30
3秒前
一拳一个小欧阳完成签到 ,获得积分10
4秒前
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
咖啡豆应助科研通管家采纳,获得10
6秒前
咖啡豆应助科研通管家采纳,获得10
6秒前
爆米花应助Persistence采纳,获得10
6秒前
咖啡豆应助科研通管家采纳,获得10
6秒前
今后应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
又胖了完成签到,获得积分10
7秒前
脑洞疼应助谦让诗采纳,获得10
8秒前
机灵自中完成签到,获得积分10
9秒前
10秒前
11秒前
12秒前
爱听歌的寄云完成签到 ,获得积分10
12秒前
12秒前
Demo发布了新的文献求助10
13秒前
研友_VZG7GZ应助维生素采纳,获得10
14秒前
宋泽艺完成签到 ,获得积分10
14秒前
17秒前
王粒完成签到,获得积分10
23秒前
25秒前
陈宇是傻卵完成签到,获得积分10
25秒前
Demo完成签到,获得积分10
28秒前
打鬼忍者完成签到 ,获得积分10
29秒前
june完成签到,获得积分10
30秒前
31秒前
31秒前
浅梳雨完成签到,获得积分10
32秒前
stellafreeman完成签到,获得积分10
32秒前
楼亦玉完成签到,获得积分10
33秒前
萝卜炖土豆完成签到,获得积分10
34秒前
34秒前
朴实香露发布了新的文献求助10
37秒前
执玉笛完成签到,获得积分10
38秒前
好学者完成签到 ,获得积分0
40秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140361
求助须知:如何正确求助?哪些是违规求助? 2791184
关于积分的说明 7798192
捐赠科研通 2447619
什么是DOI,文献DOI怎么找? 1301996
科研通“疑难数据库(出版商)”最低求助积分说明 626354
版权声明 601194