Development of interpretable machine learning models associated with environmental chemicals to predict all-cause and specific-cause mortality:A longitudinal study based on NHANES

全国健康与营养检查调查 医学 环境卫生 人口学 人口 社会学
作者
Siyu Duan,Yafei Wu,Junmin Zhu,Xing Wang,Yaheng Zhang,Chenming Gu,Ya Fang
出处
期刊:Ecotoxicology and Environmental Safety [Elsevier BV]
卷期号:270: 115864-115864 被引量:6
标识
DOI:10.1016/j.ecoenv.2023.115864
摘要

Limited information is available on potential predictive value of environmental chemicals for mortality. Our study aimed to investigate the associations between 43 of 8 classes representative environmental chemicals in serum/urine and mortality, and further develop the interpretable machine learning models associated with environmental chemicals to predict mortality. A total of 1602 participants were included from the National Health and Nutrition Examination Survey (NHANES). During 154,646 person-months of follow-up, 127 deaths occurred. We found that machine learning showed promise in predicting mortality. CoxPH was selected as the optimal model for predicting all-cause mortality with time-dependent AUROC of 0.953 (95%CI: 0.951–0.955). Coxnet was the best model for predicting cardiovascular disease (CVD) and cancer mortality with time-dependent AUROCs of 0.935 (95%CI: 0.933–0.936) and 0.850 (95%CI: 0.844–0.857). Based on clinical variables, adding environmental chemicals could enhance the predictive ability of cancer mortality (P < 0.05). Some environmental chemicals contributed more to the models than traditional clinical variables. Combined the results of association and prediction models by interpretable machine learning analyses, we found urinary methyl paraben (MP) and urinary 2-napthol (2-NAP) were negatively associated with all-cause mortality, while serum cadmium (Cd) was positively associated with all-cause mortality. Urinary bisphenol A (BPA) was positively associated with CVD mortality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoxiao发布了新的文献求助10
1秒前
上官若男应助一休采纳,获得10
1秒前
林123a发布了新的文献求助10
2秒前
鱼圆杂铺完成签到 ,获得积分10
2秒前
3秒前
小吕发布了新的文献求助20
3秒前
企鹅不耐热完成签到 ,获得积分10
3秒前
123.完成签到 ,获得积分10
4秒前
故意的乐瑶完成签到,获得积分20
5秒前
7秒前
Hot发布了新的文献求助10
8秒前
你非常棒发布了新的文献求助30
9秒前
687完成签到,获得积分10
10秒前
香蕉觅云应助christine采纳,获得10
11秒前
11秒前
SCI朝我来完成签到,获得积分10
11秒前
11秒前
山神厘子完成签到,获得积分10
11秒前
12秒前
无花果应助小可爱啵采纳,获得30
12秒前
Hot完成签到,获得积分10
13秒前
科研通AI6应助dameng139采纳,获得10
14秒前
summer应助christine采纳,获得10
14秒前
布图格其完成签到,获得积分10
15秒前
哈哈完成签到 ,获得积分10
15秒前
AlexLXJ完成签到,获得积分10
16秒前
闪闪白萱关注了科研通微信公众号
17秒前
王王的狗子完成签到 ,获得积分10
18秒前
研友_VZG7GZ应助christine采纳,获得10
18秒前
斯文静竹发布了新的文献求助10
18秒前
北大荒完成签到,获得积分10
19秒前
AlexLXJ发布了新的文献求助10
19秒前
Jasper应助无心的棉花糖采纳,获得10
22秒前
23秒前
24秒前
24秒前
英姑应助小小小小w采纳,获得10
25秒前
jiaojiao完成签到 ,获得积分10
25秒前
852应助ewmmel采纳,获得10
26秒前
上官若男应助ewmmel采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5258607
求助须知:如何正确求助?哪些是违规求助? 4420536
关于积分的说明 13760609
捐赠科研通 4294224
什么是DOI,文献DOI怎么找? 2356308
邀请新用户注册赠送积分活动 1352632
关于科研通互助平台的介绍 1313481