Development of interpretable machine learning models associated with environmental chemicals to predict all-cause and specific-cause mortality:A longitudinal study based on NHANES

全国健康与营养检查调查 医学 环境卫生 人口学 人口 社会学
作者
Siyu Duan,Yafei Wu,Junmin Zhu,Xing Wang,Yaheng Zhang,Chenming Gu,Ya Fang
出处
期刊:Ecotoxicology and Environmental Safety [Elsevier]
卷期号:270: 115864-115864 被引量:2
标识
DOI:10.1016/j.ecoenv.2023.115864
摘要

Limited information is available on potential predictive value of environmental chemicals for mortality. Our study aimed to investigate the associations between 43 of 8 classes representative environmental chemicals in serum/urine and mortality, and further develop the interpretable machine learning models associated with environmental chemicals to predict mortality. A total of 1602 participants were included from the National Health and Nutrition Examination Survey (NHANES). During 154,646 person-months of follow-up, 127 deaths occurred. We found that machine learning showed promise in predicting mortality. CoxPH was selected as the optimal model for predicting all-cause mortality with time-dependent AUROC of 0.953 (95%CI: 0.951–0.955). Coxnet was the best model for predicting cardiovascular disease (CVD) and cancer mortality with time-dependent AUROCs of 0.935 (95%CI: 0.933–0.936) and 0.850 (95%CI: 0.844–0.857). Based on clinical variables, adding environmental chemicals could enhance the predictive ability of cancer mortality (P < 0.05). Some environmental chemicals contributed more to the models than traditional clinical variables. Combined the results of association and prediction models by interpretable machine learning analyses, we found urinary methyl paraben (MP) and urinary 2-napthol (2-NAP) were negatively associated with all-cause mortality, while serum cadmium (Cd) was positively associated with all-cause mortality. Urinary bisphenol A (BPA) was positively associated with CVD mortality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助公司VV采纳,获得10
刚刚
2秒前
Hosea发布了新的文献求助30
2秒前
orixero应助霍巧凡采纳,获得10
2秒前
即兴完成签到,获得积分10
3秒前
3秒前
4秒前
5秒前
6秒前
6秒前
坚强幼晴发布了新的文献求助10
7秒前
7秒前
王一生发布了新的文献求助20
8秒前
小二郎应助宇宇宇采纳,获得10
8秒前
C-fly发布了新的文献求助10
9秒前
WZC发布了新的文献求助10
9秒前
SAINT发布了新的文献求助10
10秒前
尔东发布了新的文献求助10
12秒前
13秒前
赵文伟完成签到,获得积分20
13秒前
ywd发布了新的文献求助10
13秒前
Hector完成签到,获得积分10
14秒前
LPL完成签到,获得积分10
14秒前
ShowMaker举报憨憨求助涉嫌违规
14秒前
Vegetable_Dog发布了新的文献求助10
15秒前
15秒前
17秒前
霍巧凡发布了新的文献求助10
18秒前
坚强幼晴完成签到,获得积分10
18秒前
liian7应助WANGT采纳,获得10
18秒前
烟花应助11采纳,获得10
18秒前
21秒前
xiaofei666发布了新的文献求助50
22秒前
橙汁儿完成签到,获得积分10
23秒前
谨慎文龙完成签到,获得积分10
23秒前
Hosea完成签到,获得积分10
23秒前
清爽达完成签到 ,获得积分10
23秒前
勤奋幻柏完成签到,获得积分10
23秒前
lcs完成签到,获得积分10
24秒前
shi0331完成签到,获得积分10
24秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145200
求助须知:如何正确求助?哪些是违规求助? 2796565
关于积分的说明 7820588
捐赠科研通 2452958
什么是DOI,文献DOI怎么找? 1305288
科研通“疑难数据库(出版商)”最低求助积分说明 627466
版权声明 601464