Identification of pollution source and prediction of water quality based on deep learning techniques

环境科学 水质 污染物 污染 化学需氧量 环境工程 干旱 水资源管理 废水 生态学 古生物学 化学 有机化学 生物
作者
Junping Wang,Baolin Xue,Yuntao Wang,A Yinglan,Guoqiang Wang,Dongqing Han
出处
期刊:Journal of Contaminant Hydrology [Elsevier]
卷期号:261: 104287-104287 被引量:8
标识
DOI:10.1016/j.jconhyd.2023.104287
摘要

Semi-arid rivers are particularly vulnerable and responsive to the impacts of industrial contamination. Prompt identification and projection of pollutant dynamics are crucial in the accidental pollution incidents, therefore required the timely informed and effective management strategies. In this study, we collected water quality monitoring data from a typical semi-arid river. By water quality inter-correlation mapping, we identified the regularity and abnormal fluctuations of pollutant discharges. Combining the association rule method (Apriori) and characterized pollutants of different industries, we tracked major industrial pollution sources in the Dahei River Basin. Meanwhile, we deployed the integrated multivariate long and short-term memory network (LSTM) to forecast principal contaminants. Our findings revealed that (1) biological oxygen demand (BOD), chemical oxygen demand (COD), total nitrogen, total phosphorus, and ammonia nitrogen exhibited high inter-correlations in water quality mapping, with lead and cadmium also demonstrating a strong association; (2) The main point sources of contaminant were coking, metal mining, and smelting industries. The government should strengthen the regulation and control of these industries and prevent further pollution of the river; (3) We confirmed 4 key pollutants: COD, ammonia nitrogen, total nitrogen, and total phosphorus. Our study accurately predicted the future changes in this water quality index. The best results were obtained when the prediction period was 1 day. The prediction accuracies reached 85.85%, 47.15%, 85.66%, and 89.07%, respectively. In essence, this research developed effective water quality traceability and predictive analysis methods in semi-arid river basins. It provided an effective tool for water quality surveillance in semi-arid river basins and imparts a scientific scaffold for the environmental stewardship endeavors of pertinent authorities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
成就的笑南完成签到 ,获得积分10
1秒前
偷狗的小月亮完成签到,获得积分10
1秒前
爱吃泡芙完成签到,获得积分10
1秒前
ysl完成签到,获得积分10
2秒前
2秒前
爆米花应助pipge采纳,获得30
2秒前
彻底完成签到,获得积分10
3秒前
4秒前
韋晴完成签到,获得积分10
5秒前
5秒前
7秒前
领导范儿应助wenjian采纳,获得10
7秒前
7秒前
奇拉维特完成签到 ,获得积分10
7秒前
8秒前
Apple发布了新的文献求助10
8秒前
wtg完成签到,获得积分10
8秒前
在水一方应助Sheila采纳,获得10
9秒前
英姑应助YE采纳,获得30
9秒前
ysl发布了新的文献求助30
9秒前
9秒前
cilan完成签到 ,获得积分10
12秒前
义气的妙松完成签到,获得积分10
12秒前
yangjing发布了新的文献求助10
13秒前
rosexu发布了新的文献求助10
13秒前
盘尼西林发布了新的文献求助10
14秒前
科研通AI2S应助我是125采纳,获得10
14秒前
李健的小迷弟应助arkamar采纳,获得10
15秒前
Xiaoxiao完成签到,获得积分10
15秒前
cilan发布了新的文献求助10
15秒前
SciGPT应助William鉴哲采纳,获得10
15秒前
16秒前
咩咩完成签到,获得积分20
17秒前
合一海盗应助wtg采纳,获得200
17秒前
17秒前
Grayball应助ccc采纳,获得10
17秒前
bkagyin应助猪猪hero采纳,获得10
18秒前
18秒前
科研通AI5应助顺利毕业采纳,获得10
19秒前
领导范儿应助spray采纳,获得30
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808