Identification of pollution source and prediction of water quality based on deep learning techniques

环境科学 水质 污染物 污染 化学需氧量 环境工程 干旱 水资源管理 废水 生态学 古生物学 化学 有机化学 生物
作者
Junping Wang,Baolin Xue,Yuntao Wang,A Yinglan,Guoqiang Wang,Dongqing Han
出处
期刊:Journal of Contaminant Hydrology [Elsevier BV]
卷期号:261: 104287-104287 被引量:26
标识
DOI:10.1016/j.jconhyd.2023.104287
摘要

Semi-arid rivers are particularly vulnerable and responsive to the impacts of industrial contamination. Prompt identification and projection of pollutant dynamics are crucial in the accidental pollution incidents, therefore required the timely informed and effective management strategies. In this study, we collected water quality monitoring data from a typical semi-arid river. By water quality inter-correlation mapping, we identified the regularity and abnormal fluctuations of pollutant discharges. Combining the association rule method (Apriori) and characterized pollutants of different industries, we tracked major industrial pollution sources in the Dahei River Basin. Meanwhile, we deployed the integrated multivariate long and short-term memory network (LSTM) to forecast principal contaminants. Our findings revealed that (1) biological oxygen demand (BOD), chemical oxygen demand (COD), total nitrogen, total phosphorus, and ammonia nitrogen exhibited high inter-correlations in water quality mapping, with lead and cadmium also demonstrating a strong association; (2) The main point sources of contaminant were coking, metal mining, and smelting industries. The government should strengthen the regulation and control of these industries and prevent further pollution of the river; (3) We confirmed 4 key pollutants: COD, ammonia nitrogen, total nitrogen, and total phosphorus. Our study accurately predicted the future changes in this water quality index. The best results were obtained when the prediction period was 1 day. The prediction accuracies reached 85.85%, 47.15%, 85.66%, and 89.07%, respectively. In essence, this research developed effective water quality traceability and predictive analysis methods in semi-arid river basins. It provided an effective tool for water quality surveillance in semi-arid river basins and imparts a scientific scaffold for the environmental stewardship endeavors of pertinent authorities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_n0kqxL发布了新的文献求助10
刚刚
舒伯特完成签到 ,获得积分10
刚刚
小鱼发布了新的文献求助10
刚刚
1秒前
2秒前
Hinuo完成签到,获得积分10
2秒前
2秒前
Lucas应助HD采纳,获得10
2秒前
Hugrainbow完成签到,获得积分10
2秒前
zhuo完成签到,获得积分10
2秒前
思源应助舒服的鱼采纳,获得10
3秒前
3秒前
科研通AI5应助长情诗翠采纳,获得30
3秒前
3秒前
邹大亮发布了新的文献求助10
4秒前
子璇发布了新的文献求助10
4秒前
lianliyou完成签到,获得积分10
4秒前
Geo_new发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
空白娃娃完成签到,获得积分10
5秒前
芊芊完成签到 ,获得积分10
5秒前
5秒前
在水一方应助月星采纳,获得10
6秒前
6秒前
张张发布了新的文献求助10
6秒前
6秒前
gao完成签到,获得积分10
7秒前
wanci应助结实的凉面采纳,获得10
7秒前
7秒前
8秒前
April发布了新的文献求助10
8秒前
8秒前
zxe发布了新的文献求助10
8秒前
李爱国应助Yuchaoo采纳,获得10
10秒前
研友_VZG7GZ应助懵懂的听枫采纳,获得10
10秒前
xiaoyi发布了新的文献求助10
11秒前
11秒前
英俊的铭应助科赫额采纳,获得10
11秒前
11秒前
MLYSHR发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5087952
求助须知:如何正确求助?哪些是违规求助? 4303040
关于积分的说明 13410069
捐赠科研通 4128592
什么是DOI,文献DOI怎么找? 2260993
邀请新用户注册赠送积分活动 1265119
关于科研通互助平台的介绍 1199495