已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Identification of pollution source and prediction of water quality based on deep learning techniques

环境科学 水质 污染物 污染 化学需氧量 环境工程 干旱 水资源管理 废水 生态学 古生物学 化学 有机化学 生物
作者
Junping Wang,Baolin Xue,Yuntao Wang,A Yinglan,Guoqiang Wang,Dongqing Han
出处
期刊:Journal of Contaminant Hydrology [Elsevier]
卷期号:261: 104287-104287 被引量:26
标识
DOI:10.1016/j.jconhyd.2023.104287
摘要

Semi-arid rivers are particularly vulnerable and responsive to the impacts of industrial contamination. Prompt identification and projection of pollutant dynamics are crucial in the accidental pollution incidents, therefore required the timely informed and effective management strategies. In this study, we collected water quality monitoring data from a typical semi-arid river. By water quality inter-correlation mapping, we identified the regularity and abnormal fluctuations of pollutant discharges. Combining the association rule method (Apriori) and characterized pollutants of different industries, we tracked major industrial pollution sources in the Dahei River Basin. Meanwhile, we deployed the integrated multivariate long and short-term memory network (LSTM) to forecast principal contaminants. Our findings revealed that (1) biological oxygen demand (BOD), chemical oxygen demand (COD), total nitrogen, total phosphorus, and ammonia nitrogen exhibited high inter-correlations in water quality mapping, with lead and cadmium also demonstrating a strong association; (2) The main point sources of contaminant were coking, metal mining, and smelting industries. The government should strengthen the regulation and control of these industries and prevent further pollution of the river; (3) We confirmed 4 key pollutants: COD, ammonia nitrogen, total nitrogen, and total phosphorus. Our study accurately predicted the future changes in this water quality index. The best results were obtained when the prediction period was 1 day. The prediction accuracies reached 85.85%, 47.15%, 85.66%, and 89.07%, respectively. In essence, this research developed effective water quality traceability and predictive analysis methods in semi-arid river basins. It provided an effective tool for water quality surveillance in semi-arid river basins and imparts a scientific scaffold for the environmental stewardship endeavors of pertinent authorities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
山复尔尔完成签到 ,获得积分10
1秒前
菲菲完成签到 ,获得积分10
2秒前
精明冰夏完成签到,获得积分10
2秒前
风不定发布了新的文献求助30
3秒前
李程阳完成签到 ,获得积分10
4秒前
小机灵发布了新的文献求助10
5秒前
twinkle完成签到 ,获得积分10
7秒前
小吴完成签到,获得积分10
8秒前
选兵完成签到,获得积分10
9秒前
伶俐的金连完成签到 ,获得积分10
9秒前
pass完成签到 ,获得积分10
9秒前
曲淳完成签到,获得积分10
10秒前
10秒前
哆啦小奶龙完成签到,获得积分10
11秒前
11秒前
爱听歌电灯胆完成签到,获得积分10
11秒前
忧伤的映阳完成签到 ,获得积分10
11秒前
Lucas应助吃死你啦啦采纳,获得10
14秒前
点点点完成签到 ,获得积分10
18秒前
清秀小霸王完成签到,获得积分10
18秒前
19秒前
丁昂霄完成签到 ,获得积分10
20秒前
嘁嘁嘁完成签到,获得积分10
21秒前
HH完成签到,获得积分10
23秒前
雅士白农学家完成签到,获得积分10
23秒前
兜兜风gf完成签到 ,获得积分10
24秒前
称心的冰安完成签到,获得积分10
24秒前
yinlao完成签到,获得积分10
25秒前
Vintoe完成签到 ,获得积分10
25秒前
听曲散步完成签到,获得积分10
25秒前
25秒前
明亮的幻灵完成签到,获得积分10
27秒前
lijunliang完成签到 ,获得积分10
27秒前
七号在野闪闪完成签到 ,获得积分10
28秒前
rayc应助卡皮巴拉桑采纳,获得10
28秒前
所所应助实物图采纳,获得10
29秒前
晨晨完成签到 ,获得积分10
29秒前
Carole完成签到 ,获得积分10
30秒前
Akim应助雅士白农学家采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407525
求助须知:如何正确求助?哪些是违规求助? 4525082
关于积分的说明 14100857
捐赠科研通 4438819
什么是DOI,文献DOI怎么找? 2436491
邀请新用户注册赠送积分活动 1428483
关于科研通互助平台的介绍 1406504