Identification of pollution source and prediction of water quality based on deep learning techniques

环境科学 水质 污染物 污染 化学需氧量 环境工程 干旱 水污染 水资源管理 废水 环境化学 生态学 生物 古生物学 有机化学 化学
作者
Junping Wang,Baolin Xue,Yuntao Wang,A Yinglan,Guoqiang Wang,Dongqing Han
出处
期刊:Journal of Contaminant Hydrology [Elsevier]
卷期号:261: 104287-104287 被引量:6
标识
DOI:10.1016/j.jconhyd.2023.104287
摘要

Semi-arid rivers are particularly vulnerable and responsive to the impacts of industrial contamination. Prompt identification and projection of pollutant dynamics are crucial in the accidental pollution incidents, therefore required the timely informed and effective management strategies. In this study, we collected water quality monitoring data from a typical semi-arid river. By water quality inter-correlation mapping, we identified the regularity and abnormal fluctuations of pollutant discharges. Combining the association rule method (Apriori) and characterized pollutants of different industries, we tracked major industrial pollution sources in the Dahei River Basin. Meanwhile, we deployed the integrated multivariate long and short-term memory network (LSTM) to forecast principal contaminants. Our findings revealed that (1) biological oxygen demand (BOD), chemical oxygen demand (COD), total nitrogen, total phosphorus, and ammonia nitrogen exhibited high inter-correlations in water quality mapping, with lead and cadmium also demonstrating a strong association; (2) The main point sources of contaminant were coking, metal mining, and smelting industries. The government should strengthen the regulation and control of these industries and prevent further pollution of the river; (3) We confirmed 4 key pollutants: COD, ammonia nitrogen, total nitrogen, and total phosphorus. Our study accurately predicted the future changes in this water quality index. The best results were obtained when the prediction period was 1 day. The prediction accuracies reached 85.85%, 47.15%, 85.66%, and 89.07%, respectively. In essence, this research developed effective water quality traceability and predictive analysis methods in semi-arid river basins. It provided an effective tool for water quality surveillance in semi-arid river basins and imparts a scientific scaffold for the environmental stewardship endeavors of pertinent authorities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助整齐凌萱采纳,获得10
2秒前
勤恳忆霜完成签到,获得积分10
2秒前
阳光易蓉完成签到,获得积分10
3秒前
4秒前
5秒前
6秒前
Choi发布了新的文献求助20
8秒前
9秒前
9秒前
9秒前
10秒前
mouset270发布了新的文献求助30
10秒前
佳敏发布了新的文献求助10
11秒前
Accepted应助mysoul123采纳,获得10
11秒前
11秒前
jwb711发布了新的文献求助10
13秒前
湘君发布了新的文献求助20
13秒前
14秒前
骆子军完成签到 ,获得积分10
14秒前
整齐凌萱发布了新的文献求助10
15秒前
小蘑菇应助机灵的仙人掌采纳,获得10
15秒前
16秒前
大模型应助高大的曼寒采纳,获得10
17秒前
汉堡包应助jwb711采纳,获得20
17秒前
17秒前
Owen应助wen采纳,获得10
17秒前
SciGPT应助是十二呀采纳,获得10
18秒前
天才小熊猫完成签到,获得积分10
18秒前
科研通AI2S应助立冬采纳,获得10
18秒前
jiexika完成签到,获得积分10
18秒前
19秒前
19秒前
楼北完成签到,获得积分10
19秒前
柠木完成签到 ,获得积分10
19秒前
鱼腩发布了新的文献求助10
20秒前
坦率的棉花糖完成签到 ,获得积分10
20秒前
sfxnxgu发布了新的文献求助10
20秒前
含蓄元冬发布了新的文献求助10
21秒前
淋漓尽致发布了新的文献求助10
21秒前
hsy完成签到,获得积分10
22秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139150
求助须知:如何正确求助?哪些是违规求助? 2790122
关于积分的说明 7793698
捐赠科研通 2446483
什么是DOI,文献DOI怎么找? 1301209
科研通“疑难数据库(出版商)”最低求助积分说明 626124
版权声明 601102