Identification of pollution source and prediction of water quality based on deep learning techniques

环境科学 水质 污染物 污染 化学需氧量 环境工程 干旱 水资源管理 废水 生态学 古生物学 化学 有机化学 生物
作者
Junping Wang,Baolin Xue,Yuntao Wang,A Yinglan,Guoqiang Wang,Dongqing Han
出处
期刊:Journal of Contaminant Hydrology [Elsevier]
卷期号:261: 104287-104287 被引量:26
标识
DOI:10.1016/j.jconhyd.2023.104287
摘要

Semi-arid rivers are particularly vulnerable and responsive to the impacts of industrial contamination. Prompt identification and projection of pollutant dynamics are crucial in the accidental pollution incidents, therefore required the timely informed and effective management strategies. In this study, we collected water quality monitoring data from a typical semi-arid river. By water quality inter-correlation mapping, we identified the regularity and abnormal fluctuations of pollutant discharges. Combining the association rule method (Apriori) and characterized pollutants of different industries, we tracked major industrial pollution sources in the Dahei River Basin. Meanwhile, we deployed the integrated multivariate long and short-term memory network (LSTM) to forecast principal contaminants. Our findings revealed that (1) biological oxygen demand (BOD), chemical oxygen demand (COD), total nitrogen, total phosphorus, and ammonia nitrogen exhibited high inter-correlations in water quality mapping, with lead and cadmium also demonstrating a strong association; (2) The main point sources of contaminant were coking, metal mining, and smelting industries. The government should strengthen the regulation and control of these industries and prevent further pollution of the river; (3) We confirmed 4 key pollutants: COD, ammonia nitrogen, total nitrogen, and total phosphorus. Our study accurately predicted the future changes in this water quality index. The best results were obtained when the prediction period was 1 day. The prediction accuracies reached 85.85%, 47.15%, 85.66%, and 89.07%, respectively. In essence, this research developed effective water quality traceability and predictive analysis methods in semi-arid river basins. It provided an effective tool for water quality surveillance in semi-arid river basins and imparts a scientific scaffold for the environmental stewardship endeavors of pertinent authorities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小安同学完成签到 ,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
gglp完成签到 ,获得积分10
3秒前
Fengzhen007完成签到,获得积分10
4秒前
6秒前
潜龙完成签到 ,获得积分10
6秒前
Febridge完成签到,获得积分10
8秒前
王京华完成签到,获得积分10
9秒前
yznfly应助化简为繁采纳,获得30
10秒前
乐观海云完成签到 ,获得积分10
10秒前
陈咪咪完成签到,获得积分10
10秒前
Ares完成签到,获得积分10
11秒前
浮游应助imi采纳,获得10
12秒前
Jasper应助科研通管家采纳,获得10
14秒前
Greg应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
所所应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
Lucas应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
ding应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
14秒前
张庭豪完成签到,获得积分10
14秒前
16秒前
sdjjis完成签到 ,获得积分10
16秒前
Snail6完成签到,获得积分10
17秒前
研友_LX7zK8完成签到,获得积分10
18秒前
简奥斯汀完成签到 ,获得积分10
18秒前
wxp5294完成签到,获得积分10
18秒前
18秒前
寒冷丹雪完成签到,获得积分10
18秒前
缺缺完成签到,获得积分10
19秒前
牛仔完成签到 ,获得积分10
20秒前
21秒前
时有落花至完成签到,获得积分10
22秒前
可靠的千凝完成签到 ,获得积分10
22秒前
量子星尘发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671607
求助须知:如何正确求助?哪些是违规求助? 4920377
关于积分的说明 15135208
捐赠科研通 4830460
什么是DOI,文献DOI怎么找? 2587117
邀请新用户注册赠送积分活动 1540692
关于科研通互助平台的介绍 1499071