LMKG: A large-scale and multi-source medical knowledge graph for intelligent medicine applications

计算机科学 知识图 关系(数据库) 知识抽取 构造(python库) 医学诊断 知识库 下游(制造业) 比例(比率) 图形 医学知识 质量(理念) 数据挖掘 数据科学 情报检索 人工智能 理论计算机科学 哲学 医学教育 程序设计语言 经济 病理 物理 认识论 医学 量子力学 运营管理
作者
Peiru Yang,Hongjun Wang,Yingzhuo Huang,Shuai Yang,Zhang Ya,Liang Huang,Yuesong Zhang,Guoxin Wang,Shizhong Yang,Liang He,Yongfeng Huang
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:284: 111323-111323 被引量:12
标识
DOI:10.1016/j.knosys.2023.111323
摘要

Medical Knowledge Graph (KG) has shown great potential in various healthcare scenarios, such as drug recommendation and clinical decision support system. The factors that determine the role of a medical KG in practical applications are the scale, coverage, and quality of the medical knowledge it can provide. Most existing medical KGs are extracted from a single or a few information sources. However, medical knowledge extracted from insufficient information sources is usually highly incomplete or even biased, which results in a lack of data completeness and may lessen their effectiveness in real-world scenarios. Besides, the coverage of entity and relation types is inadequate in most previous works, which also might restrict their potential usage in future applications. In this paper, we build a unified system that can extract and manage medical knowledge from heterogeneous information sources. We first employ named entity recognition and relation extraction methods to extract knowledge triplets from medical texts. Then we propose a hierarchical entity alignment framework for further knowledge refinement. Based on our system, we construct a large-scale, high-quality, multi-source, and multi-lingual medical KG named LMKG, which includes 13 entity types and 17 relation types, and contains 403,784 entity and 1,225,097 relation instances. We conduct extensive experiments to evaluate the quality of LMKG. Experimental results show that LMKG can effectively enhance the performance of both upstream and downstream intelligent medicine applications. We have publicly released the KG resources and corresponding management service interface to facilitate research and applications in the medical field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助2023AKY采纳,获得10
1秒前
1秒前
Jqb发布了新的文献求助10
2秒前
小可爱发布了新的文献求助10
2秒前
2秒前
3秒前
小邹完成签到,获得积分10
3秒前
健忘学姐完成签到,获得积分10
4秒前
4秒前
4秒前
105400155发布了新的文献求助10
4秒前
5秒前
zp完成签到,获得积分10
7秒前
顾矜应助Dizzy采纳,获得10
7秒前
ZZDXXX发布了新的文献求助10
8秒前
2023AKY应助文件撤销了驳回
9秒前
ZHANG_Kun完成签到 ,获得积分10
9秒前
老阳发布了新的文献求助10
10秒前
loey发布了新的文献求助10
11秒前
12秒前
科研通AI5应助浩二采纳,获得10
12秒前
Jqb完成签到,获得积分20
12秒前
宏扈完成签到,获得积分10
14秒前
14秒前
林祥胜发布了新的文献求助50
14秒前
奋斗的飞薇完成签到,获得积分10
15秒前
15秒前
外科医生完成签到,获得积分10
16秒前
艺馨发布了新的文献求助10
16秒前
16秒前
16秒前
天天开心完成签到 ,获得积分10
17秒前
17秒前
Y191206完成签到,获得积分10
18秒前
Dizzy发布了新的文献求助10
19秒前
Owen应助琳儿真的很瘦了采纳,获得10
19秒前
yyyyy发布了新的文献求助10
19秒前
19秒前
CGAT发布了新的文献求助10
20秒前
我是老大应助Anthone采纳,获得10
21秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3756864
求助须知:如何正确求助?哪些是违规求助? 3300242
关于积分的说明 10113026
捐赠科研通 3014778
什么是DOI,文献DOI怎么找? 1655705
邀请新用户注册赠送积分活动 790073
科研通“疑难数据库(出版商)”最低求助积分说明 753552