LMKG: A large-scale and multi-source medical knowledge graph for intelligent medicine applications

计算机科学 知识图 关系(数据库) 知识抽取 构造(python库) 医学诊断 知识库 下游(制造业) 比例(比率) 图形 医学知识 质量(理念) 数据挖掘 数据科学 情报检索 人工智能 理论计算机科学 医学 哲学 运营管理 物理 认识论 病理 量子力学 经济 医学教育 程序设计语言
作者
Peiru Yang,Hongjun Wang,Yingzhuo Huang,Shuai Yang,Zhang Ya,Liang Huang,Yuesong Zhang,Guoxin Wang,Shizhong Yang,Liang He,Yongfeng Huang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:284: 111323-111323 被引量:6
标识
DOI:10.1016/j.knosys.2023.111323
摘要

Medical Knowledge Graph (KG) has shown great potential in various healthcare scenarios, such as drug recommendation and clinical decision support system. The factors that determine the role of a medical KG in practical applications are the scale, coverage, and quality of the medical knowledge it can provide. Most existing medical KGs are extracted from a single or a few information sources. However, medical knowledge extracted from insufficient information sources is usually highly incomplete or even biased, which results in a lack of data completeness and may lessen their effectiveness in real-world scenarios. Besides, the coverage of entity and relation types is inadequate in most previous works, which also might restrict their potential usage in future applications. In this paper, we build a unified system that can extract and manage medical knowledge from heterogeneous information sources. We first employ named entity recognition and relation extraction methods to extract knowledge triplets from medical texts. Then we propose a hierarchical entity alignment framework for further knowledge refinement. Based on our system, we construct a large-scale, high-quality, multi-source, and multi-lingual medical KG named LMKG, which includes 13 entity types and 17 relation types, and contains 403,784 entity and 1,225,097 relation instances. We conduct extensive experiments to evaluate the quality of LMKG. Experimental results show that LMKG can effectively enhance the performance of both upstream and downstream intelligent medicine applications. We have publicly released the KG resources and corresponding management service interface to facilitate research and applications in the medical field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zhang08完成签到,获得积分10
1秒前
2秒前
zz完成签到,获得积分10
4秒前
yyyy完成签到,获得积分10
5秒前
屈初雪发布了新的文献求助10
5秒前
菜鸟发布了新的文献求助10
7秒前
8秒前
9秒前
11秒前
星辰大海应助芦苇采纳,获得10
12秒前
星辰发布了新的文献求助10
12秒前
乐正念云发布了新的文献求助10
12秒前
旭旭完成签到 ,获得积分10
12秒前
有魅力勒完成签到,获得积分10
12秒前
万能图书馆应助哈哈哈采纳,获得10
12秒前
celinekk发布了新的文献求助20
12秒前
bkagyin应助AAA电材哥采纳,获得10
12秒前
ShowMaker应助萌神_HUGO采纳,获得30
13秒前
比奇堡艺术家完成签到,获得积分10
14秒前
白华苍松发布了新的文献求助10
14秒前
火星上的闭月完成签到 ,获得积分10
16秒前
五里霜完成签到,获得积分10
17秒前
卡卡卡卡卡卡完成签到 ,获得积分10
18秒前
哈好好哈哈好完成签到 ,获得积分10
19秒前
上官听白应助菜鸟采纳,获得10
20秒前
20秒前
小二郎应助㎏w采纳,获得10
20秒前
20秒前
20秒前
20秒前
starofjlu应助老张采纳,获得50
21秒前
21秒前
24秒前
sep发布了新的文献求助10
24秒前
呼呼发布了新的文献求助10
25秒前
小乐完成签到,获得积分10
25秒前
香蕉觅云应助萌神_HUGO采纳,获得10
25秒前
26秒前
26秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148165
求助须知:如何正确求助?哪些是违规求助? 2799249
关于积分的说明 7834127
捐赠科研通 2456451
什么是DOI,文献DOI怎么找? 1307282
科研通“疑难数据库(出版商)”最低求助积分说明 628124
版权声明 601655