Development and comparison of forensic interval age prediction models by statistical and machine learning methods based on the methylation rates of ELOVL2 in blood DNA

均方误差 预测区间 预测建模 人工神经网络 回归 普通最小二乘法 平均绝对误差 统计 机器学习 标准误差 区间估计 回归分析 人工智能 计算机科学 DNA甲基化 置信区间 数学 生物 遗传学 基因 基因表达
作者
Takayuki Yamagishi,Wataru Sakurai,Ken Watanabe,Kochi Toyomane,Tomoko Akutsu
出处
期刊:Forensic Science International-genetics [Elsevier]
卷期号:69: 103004-103004
标识
DOI:10.1016/j.fsigen.2023.103004
摘要

Age estimation can be useful information for narrowing down candidates of unidentified donors in criminal investigations. Various age estimation models based on DNA methylation biomarkers have been developed for forensic usage in the past decade. However, many of these models using ordinary least squares regression cannot generate an appropriate estimation due to the deterioration in prediction accuracy caused by an increased prediction error in older age groups. In the present study, to address this problem, we developed age estimation models that set an appropriate prediction interval for all age groups by two approaches: a statistical method using quantile regression (QR) and a machine learning method using an artificial neural network (ANN). Methylation datasets (n = 1280, age 0–91 years) of the promoter for the gene encoding ELOVL fatty acid elongase 2 were used to develop the QR and ANN models. By validation using several test datasets, both models were shown to enlarge prediction intervals in accordance with aging and have a high level of correct prediction (>90 %) for older age groups. The QR and ANN models also generated a point age prediction with high accuracy. The ANN model enabled a prediction with a mean absolute error (MAE) of 5.3 years and root mean square error (RMSE) of 7.3 years for the test dataset (n = 549), which were comparable to those of the QR model (MAE = 5.6 years, RMSE = 7.8 years). Their applicability to casework was also confirmed using bloodstain samples stored for various periods of time (1–14 years), indicating the stability of the models for aged bloodstain samples. From these results, it was considered that the proposed models can provide more useful and effective age estimation in forensic settings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
嘿嘿应助勇者小超人采纳,获得30
刚刚
火儿完成签到,获得积分10
1秒前
cincincin完成签到,获得积分10
1秒前
壮观的冰双完成签到,获得积分10
1秒前
爆米花应助盒子采纳,获得10
1秒前
1秒前
1秒前
2秒前
PFD000发布了新的文献求助20
3秒前
Zzziihao完成签到,获得积分10
3秒前
崔昕雨发布了新的文献求助10
3秒前
浮游应助小三花妙妙采纳,获得10
3秒前
3秒前
4秒前
4秒前
123发布了新的文献求助10
5秒前
咚咚发布了新的文献求助10
5秒前
打打应助nyzcc采纳,获得10
5秒前
5秒前
狡猾的菠萝完成签到 ,获得积分10
5秒前
传奇3应助摆烂昊采纳,获得10
6秒前
6秒前
一马当先霄完成签到,获得积分10
7秒前
7秒前
yq关注了科研通微信公众号
7秒前
墨酒发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
cuiyanjie发布了新的文献求助10
8秒前
科研通AI2S应助songyuan采纳,获得10
8秒前
冷冷子发布了新的文献求助10
8秒前
小小申发布了新的文献求助10
8秒前
cy完成签到 ,获得积分10
8秒前
我爱学习发布了新的文献求助10
9秒前
阿雅完成签到 ,获得积分10
9秒前
9秒前
琳毓完成签到,获得积分10
9秒前
hehe_198发布了新的文献求助10
9秒前
10秒前
小蘑菇应助欧皇陈书宝采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512432
求助须知:如何正确求助?哪些是违规求助? 4606873
关于积分的说明 14501499
捐赠科研通 4542174
什么是DOI,文献DOI怎么找? 2488952
邀请新用户注册赠送积分活动 1470999
关于科研通互助平台的介绍 1443152