Development and comparison of forensic interval age prediction models by statistical and machine learning methods based on the methylation rates of ELOVL2 in blood DNA

均方误差 预测区间 预测建模 人工神经网络 回归 普通最小二乘法 平均绝对误差 统计 机器学习 标准误差 区间估计 回归分析 人工智能 计算机科学 DNA甲基化 置信区间 数学 生物 遗传学 基因 基因表达
作者
Takayuki Yamagishi,Wataru Sakurai,Ken Watanabe,Kochi Toyomane,Tomoko Akutsu
出处
期刊:Forensic Science International-genetics [Elsevier]
卷期号:69: 103004-103004
标识
DOI:10.1016/j.fsigen.2023.103004
摘要

Age estimation can be useful information for narrowing down candidates of unidentified donors in criminal investigations. Various age estimation models based on DNA methylation biomarkers have been developed for forensic usage in the past decade. However, many of these models using ordinary least squares regression cannot generate an appropriate estimation due to the deterioration in prediction accuracy caused by an increased prediction error in older age groups. In the present study, to address this problem, we developed age estimation models that set an appropriate prediction interval for all age groups by two approaches: a statistical method using quantile regression (QR) and a machine learning method using an artificial neural network (ANN). Methylation datasets (n = 1280, age 0–91 years) of the promoter for the gene encoding ELOVL fatty acid elongase 2 were used to develop the QR and ANN models. By validation using several test datasets, both models were shown to enlarge prediction intervals in accordance with aging and have a high level of correct prediction (>90 %) for older age groups. The QR and ANN models also generated a point age prediction with high accuracy. The ANN model enabled a prediction with a mean absolute error (MAE) of 5.3 years and root mean square error (RMSE) of 7.3 years for the test dataset (n = 549), which were comparable to those of the QR model (MAE = 5.6 years, RMSE = 7.8 years). Their applicability to casework was also confirmed using bloodstain samples stored for various periods of time (1–14 years), indicating the stability of the models for aged bloodstain samples. From these results, it was considered that the proposed models can provide more useful and effective age estimation in forensic settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
月亮之下完成签到 ,获得积分10
刚刚
与可完成签到,获得积分10
刚刚
芒果豆豆发布了新的文献求助10
2秒前
Galaxy完成签到,获得积分10
2秒前
xu完成签到,获得积分20
2秒前
2秒前
tesla完成签到,获得积分10
2秒前
HCT完成签到,获得积分10
2秒前
czj完成签到,获得积分10
3秒前
无语的酸奶完成签到,获得积分10
3秒前
机智的乌完成签到,获得积分10
4秒前
wanci应助ant采纳,获得10
4秒前
落落完成签到,获得积分20
4秒前
anesthesia完成签到,获得积分10
4秒前
chhwang66完成签到,获得积分10
5秒前
cripple完成签到,获得积分10
5秒前
qianlan完成签到,获得积分10
6秒前
务实的鸽子完成签到,获得积分10
6秒前
tyZhang完成签到,获得积分10
7秒前
风中的绣连完成签到,获得积分10
7秒前
雪莉酒完成签到,获得积分10
7秒前
大地完成签到,获得积分10
7秒前
母广明完成签到,获得积分10
7秒前
Mia完成签到,获得积分10
7秒前
kaka091完成签到,获得积分10
8秒前
8秒前
阔达的黑猫完成签到,获得积分10
8秒前
神麒小雪发布了新的文献求助10
8秒前
芒果豆豆完成签到,获得积分10
8秒前
科目三应助你的样子采纳,获得10
8秒前
li完成签到,获得积分10
9秒前
小李完成签到,获得积分10
9秒前
马大勺完成签到,获得积分10
9秒前
mch发布了新的文献求助10
9秒前
葛儿完成签到 ,获得积分10
10秒前
烟花应助成就的沛菡采纳,获得10
10秒前
一只蜗牛完成签到,获得积分10
10秒前
lucky完成签到 ,获得积分10
10秒前
从容的雨灵完成签到,获得积分10
11秒前
成就的寒荷完成签到 ,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555935
求助须知:如何正确求助?哪些是违规求助? 3131542
关于积分的说明 9391519
捐赠科研通 2831325
什么是DOI,文献DOI怎么找? 1556415
邀请新用户注册赠送积分活动 726573
科研通“疑难数据库(出版商)”最低求助积分说明 715890