Development and comparison of forensic interval age prediction models by statistical and machine learning methods based on the methylation rates of ELOVL2 in blood DNA

均方误差 预测区间 预测建模 人工神经网络 回归 普通最小二乘法 平均绝对误差 统计 机器学习 标准误差 区间估计 回归分析 人工智能 计算机科学 DNA甲基化 置信区间 数学 生物 遗传学 基因 基因表达
作者
Takayuki Yamagishi,Wataru Sakurai,Ken Watanabe,Kochi Toyomane,Tomoko Akutsu
出处
期刊:Forensic Science International-genetics [Elsevier]
卷期号:69: 103004-103004
标识
DOI:10.1016/j.fsigen.2023.103004
摘要

Age estimation can be useful information for narrowing down candidates of unidentified donors in criminal investigations. Various age estimation models based on DNA methylation biomarkers have been developed for forensic usage in the past decade. However, many of these models using ordinary least squares regression cannot generate an appropriate estimation due to the deterioration in prediction accuracy caused by an increased prediction error in older age groups. In the present study, to address this problem, we developed age estimation models that set an appropriate prediction interval for all age groups by two approaches: a statistical method using quantile regression (QR) and a machine learning method using an artificial neural network (ANN). Methylation datasets (n = 1280, age 0–91 years) of the promoter for the gene encoding ELOVL fatty acid elongase 2 were used to develop the QR and ANN models. By validation using several test datasets, both models were shown to enlarge prediction intervals in accordance with aging and have a high level of correct prediction (>90 %) for older age groups. The QR and ANN models also generated a point age prediction with high accuracy. The ANN model enabled a prediction with a mean absolute error (MAE) of 5.3 years and root mean square error (RMSE) of 7.3 years for the test dataset (n = 549), which were comparable to those of the QR model (MAE = 5.6 years, RMSE = 7.8 years). Their applicability to casework was also confirmed using bloodstain samples stored for various periods of time (1–14 years), indicating the stability of the models for aged bloodstain samples. From these results, it was considered that the proposed models can provide more useful and effective age estimation in forensic settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
潜流完成签到,获得积分10
2秒前
雨木木完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
深情安青应助没有你不行采纳,获得10
3秒前
4秒前
6秒前
6秒前
河水弯弯发布了新的文献求助10
7秒前
asdasd发布了新的文献求助10
8秒前
妃子笑发布了新的文献求助10
8秒前
9秒前
谨慎烨华发布了新的文献求助20
9秒前
山海之间完成签到,获得积分10
9秒前
Kuhaku完成签到,获得积分10
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
9秒前
SYLH应助科研通管家采纳,获得10
10秒前
斯文败类应助科研通管家采纳,获得40
10秒前
10秒前
SYLH应助科研通管家采纳,获得10
10秒前
无花果应助科研通管家采纳,获得10
10秒前
优雅惜雪发布了新的文献求助10
10秒前
SYLH应助科研通管家采纳,获得10
10秒前
慕青应助科研通管家采纳,获得10
10秒前
Akim应助科研通管家采纳,获得10
10秒前
李健应助科研通管家采纳,获得10
10秒前
深情安青应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
SYLH应助科研通管家采纳,获得10
10秒前
11秒前
君君发布了新的文献求助10
11秒前
11秒前
hellosci666完成签到,获得积分10
12秒前
科研通AI5应助wuye采纳,获得10
12秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3479351
求助须知:如何正确求助?哪些是违规求助? 3070006
关于积分的说明 9116371
捐赠科研通 2761742
什么是DOI,文献DOI怎么找? 1515526
邀请新用户注册赠送积分活动 700958
科研通“疑难数据库(出版商)”最低求助积分说明 699951