已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development and comparison of forensic interval age prediction models by statistical and machine learning methods based on the methylation rates of ELOVL2 in blood DNA

均方误差 预测区间 预测建模 人工神经网络 回归 普通最小二乘法 平均绝对误差 统计 机器学习 标准误差 区间估计 回归分析 人工智能 计算机科学 DNA甲基化 置信区间 数学 生物 遗传学 基因 基因表达
作者
Takayuki Yamagishi,Wataru Sakurai,Ken Watanabe,Kochi Toyomane,Tomoko Akutsu
出处
期刊:Forensic Science International-genetics [Elsevier BV]
卷期号:69: 103004-103004
标识
DOI:10.1016/j.fsigen.2023.103004
摘要

Age estimation can be useful information for narrowing down candidates of unidentified donors in criminal investigations. Various age estimation models based on DNA methylation biomarkers have been developed for forensic usage in the past decade. However, many of these models using ordinary least squares regression cannot generate an appropriate estimation due to the deterioration in prediction accuracy caused by an increased prediction error in older age groups. In the present study, to address this problem, we developed age estimation models that set an appropriate prediction interval for all age groups by two approaches: a statistical method using quantile regression (QR) and a machine learning method using an artificial neural network (ANN). Methylation datasets (n = 1280, age 0–91 years) of the promoter for the gene encoding ELOVL fatty acid elongase 2 were used to develop the QR and ANN models. By validation using several test datasets, both models were shown to enlarge prediction intervals in accordance with aging and have a high level of correct prediction (>90 %) for older age groups. The QR and ANN models also generated a point age prediction with high accuracy. The ANN model enabled a prediction with a mean absolute error (MAE) of 5.3 years and root mean square error (RMSE) of 7.3 years for the test dataset (n = 549), which were comparable to those of the QR model (MAE = 5.6 years, RMSE = 7.8 years). Their applicability to casework was also confirmed using bloodstain samples stored for various periods of time (1–14 years), indicating the stability of the models for aged bloodstain samples. From these results, it was considered that the proposed models can provide more useful and effective age estimation in forensic settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
hhhi发布了新的文献求助10
5秒前
leo完成签到,获得积分10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
猪猪hero应助科研通管家采纳,获得10
5秒前
5秒前
leo发布了新的文献求助10
8秒前
CanadaPaoKing完成签到 ,获得积分10
8秒前
ctomit完成签到,获得积分10
10秒前
Lucas应助Trtr7985采纳,获得10
12秒前
Tian_lanlan完成签到,获得积分10
12秒前
rui520完成签到 ,获得积分10
14秒前
好久不见完成签到 ,获得积分10
21秒前
英俊的铭应助几酝采纳,获得30
22秒前
aa完成签到,获得积分10
24秒前
Doris完成签到 ,获得积分10
24秒前
Chi_bio关注了科研通微信公众号
25秒前
CodeCraft应助hhhi采纳,获得10
28秒前
一直向前发布了新的文献求助10
30秒前
34秒前
37秒前
37秒前
AFM发布了新的文献求助10
42秒前
43秒前
独特跳跳糖完成签到 ,获得积分10
43秒前
立军完成签到,获得积分10
46秒前
Sarah完成签到 ,获得积分10
47秒前
落晖完成签到 ,获得积分10
47秒前
Chi_bio发布了新的文献求助10
47秒前
xx1234567890发布了新的文献求助10
48秒前
张aa完成签到 ,获得积分10
48秒前
风鱼完成签到 ,获得积分10
49秒前
没有昵称完成签到 ,获得积分10
52秒前
三井库里发布了新的文献求助10
54秒前
58秒前
洛芷发布了新的文献求助10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989918
求助须知:如何正确求助?哪些是违规求助? 3532013
关于积分的说明 11255831
捐赠科研通 3270829
什么是DOI,文献DOI怎么找? 1805053
邀请新用户注册赠送积分活动 882233
科研通“疑难数据库(出版商)”最低求助积分说明 809216