Development and comparison of forensic interval age prediction models by statistical and machine learning methods based on the methylation rates of ELOVL2 in blood DNA

均方误差 预测区间 预测建模 人工神经网络 回归 普通最小二乘法 平均绝对误差 统计 机器学习 标准误差 区间估计 回归分析 人工智能 计算机科学 DNA甲基化 置信区间 数学 生物 遗传学 基因 基因表达
作者
Takayuki Yamagishi,Wataru Sakurai,Ken Watanabe,Kochi Toyomane,Tomoko Akutsu
出处
期刊:Forensic Science International-genetics [Elsevier BV]
卷期号:69: 103004-103004
标识
DOI:10.1016/j.fsigen.2023.103004
摘要

Age estimation can be useful information for narrowing down candidates of unidentified donors in criminal investigations. Various age estimation models based on DNA methylation biomarkers have been developed for forensic usage in the past decade. However, many of these models using ordinary least squares regression cannot generate an appropriate estimation due to the deterioration in prediction accuracy caused by an increased prediction error in older age groups. In the present study, to address this problem, we developed age estimation models that set an appropriate prediction interval for all age groups by two approaches: a statistical method using quantile regression (QR) and a machine learning method using an artificial neural network (ANN). Methylation datasets (n = 1280, age 0–91 years) of the promoter for the gene encoding ELOVL fatty acid elongase 2 were used to develop the QR and ANN models. By validation using several test datasets, both models were shown to enlarge prediction intervals in accordance with aging and have a high level of correct prediction (>90 %) for older age groups. The QR and ANN models also generated a point age prediction with high accuracy. The ANN model enabled a prediction with a mean absolute error (MAE) of 5.3 years and root mean square error (RMSE) of 7.3 years for the test dataset (n = 549), which were comparable to those of the QR model (MAE = 5.6 years, RMSE = 7.8 years). Their applicability to casework was also confirmed using bloodstain samples stored for various periods of time (1–14 years), indicating the stability of the models for aged bloodstain samples. From these results, it was considered that the proposed models can provide more useful and effective age estimation in forensic settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Crystal完成签到 ,获得积分10
刚刚
1秒前
1秒前
2秒前
2秒前
2秒前
乐乐应助赖道之采纳,获得10
3秒前
3秒前
Sun_Chen完成签到,获得积分10
3秒前
体贴凌柏发布了新的文献求助10
4秒前
成就的笑南完成签到 ,获得积分10
4秒前
5秒前
5秒前
wyw123完成签到,获得积分10
5秒前
求大佬帮助完成签到,获得积分10
5秒前
李健的小迷弟应助zyq采纳,获得10
6秒前
陈隆完成签到,获得积分10
6秒前
哎呀完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
mary完成签到,获得积分10
7秒前
7秒前
朱成豪发布了新的文献求助10
9秒前
deallyxyz应助科研通管家采纳,获得10
9秒前
科目三应助科研通管家采纳,获得10
9秒前
大个应助科研通管家采纳,获得10
9秒前
比比谁的速度快应助曾珍采纳,获得50
9秒前
9秒前
予修应助科研通管家采纳,获得10
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
wanci应助科研通管家采纳,获得30
9秒前
9秒前
9秒前
吹雪完成签到,获得积分0
9秒前
美好的尔白完成签到,获得积分10
9秒前
O-M175完成签到,获得积分10
10秒前
Jasper应助hahaha123213123采纳,获得10
10秒前
可爱的函函应助天天向上采纳,获得10
11秒前
陈隆完成签到,获得积分10
15秒前
15秒前
高乾飞完成签到 ,获得积分10
16秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038368
求助须知:如何正确求助?哪些是违规求助? 3576068
关于积分的说明 11374313
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029