Development and comparison of forensic interval age prediction models by statistical and machine learning methods based on the methylation rates of ELOVL2 in blood DNA

均方误差 预测区间 预测建模 人工神经网络 回归 普通最小二乘法 平均绝对误差 统计 机器学习 标准误差 区间估计 回归分析 人工智能 计算机科学 DNA甲基化 置信区间 数学 生物 遗传学 基因 基因表达
作者
Takayuki Yamagishi,Wataru Sakurai,Ken Watanabe,Kochi Toyomane,Tomoko Akutsu
出处
期刊:Forensic Science International-genetics [Elsevier]
卷期号:69: 103004-103004
标识
DOI:10.1016/j.fsigen.2023.103004
摘要

Age estimation can be useful information for narrowing down candidates of unidentified donors in criminal investigations. Various age estimation models based on DNA methylation biomarkers have been developed for forensic usage in the past decade. However, many of these models using ordinary least squares regression cannot generate an appropriate estimation due to the deterioration in prediction accuracy caused by an increased prediction error in older age groups. In the present study, to address this problem, we developed age estimation models that set an appropriate prediction interval for all age groups by two approaches: a statistical method using quantile regression (QR) and a machine learning method using an artificial neural network (ANN). Methylation datasets (n = 1280, age 0–91 years) of the promoter for the gene encoding ELOVL fatty acid elongase 2 were used to develop the QR and ANN models. By validation using several test datasets, both models were shown to enlarge prediction intervals in accordance with aging and have a high level of correct prediction (>90 %) for older age groups. The QR and ANN models also generated a point age prediction with high accuracy. The ANN model enabled a prediction with a mean absolute error (MAE) of 5.3 years and root mean square error (RMSE) of 7.3 years for the test dataset (n = 549), which were comparable to those of the QR model (MAE = 5.6 years, RMSE = 7.8 years). Their applicability to casework was also confirmed using bloodstain samples stored for various periods of time (1–14 years), indicating the stability of the models for aged bloodstain samples. From these results, it was considered that the proposed models can provide more useful and effective age estimation in forensic settings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暮商零七发布了新的文献求助10
1秒前
大约在冬季完成签到,获得积分10
1秒前
2秒前
yyauthor完成签到,获得积分10
2秒前
3秒前
xuzekun完成签到,获得积分10
3秒前
3秒前
鱼鱼片片发布了新的文献求助10
3秒前
3秒前
ding应助雨碎寒江采纳,获得10
4秒前
sasa发布了新的文献求助10
4秒前
許1111发布了新的文献求助10
5秒前
Alex发布了新的文献求助10
5秒前
harriet chen发布了新的文献求助10
5秒前
阿萨十大发布了新的文献求助10
5秒前
6秒前
华仔应助研友_8QxayZ采纳,获得10
6秒前
7秒前
help3q完成签到,获得积分10
8秒前
llh发布了新的文献求助10
8秒前
赘婿应助暮商零七采纳,获得10
8秒前
9秒前
怡然冷安完成签到,获得积分10
9秒前
9秒前
哈哈哈完成签到,获得积分10
9秒前
秋去去完成签到,获得积分10
10秒前
希望天下0贩的0应助Towne采纳,获得10
10秒前
11秒前
11秒前
李健应助CJN采纳,获得10
11秒前
lily完成签到,获得积分20
12秒前
流云发布了新的文献求助10
12秒前
April完成签到 ,获得积分10
12秒前
清秀橘子完成签到,获得积分10
12秒前
mika完成签到,获得积分10
12秒前
wuliumu完成签到,获得积分10
12秒前
13秒前
13秒前
lizhoukan1完成签到,获得积分10
13秒前
李爱国应助whisper采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667772
求助须知:如何正确求助?哪些是违规求助? 4887765
关于积分的说明 15121847
捐赠科研通 4826643
什么是DOI,文献DOI怎么找? 2584209
邀请新用户注册赠送积分活动 1538157
关于科研通互助平台的介绍 1496386