An Empirical Investigation of Manufacturers’ Operations Innovations in New Product Development Enabled by E-Commerce Platforms

新产品开发 业务 产品(数学) 计算机科学 产业组织 运营管理 过程管理 商业 营销 制造工程 经济 工程类 几何学 数学
作者
Yiying Zhang,Xiao-Song Peng,Xiande Zhao,Yang Lei
出处
期刊:Production and Operations Management [Wiley]
被引量:5
标识
DOI:10.1177/10591478231224958
摘要

E-commerce platforms are playing an increasingly important role in influencing manufacturers’ supply chain and product decisions. An emerging supply chain innovation, known as the platform-based consumer-to-manufacturer (PC2M) model, has been initiated by several large e-commerce platforms based on established digital links between consumers and manufacturers. These links enable consumer inputs into manufacturers’ operations, indirectly by capturing consumer preferences from platform-accumulated big data and directly by enabling consumer interaction with manufacturers through the e-commerce platform. Although manufacturers are increasingly integrating PC2M into new product development (NPD), there is little research on operations innovations in connection with the PC2M model and its impact on manufacturers’ new product success. To fill this research gap, we investigate the PC2M model of JD.com, a leading e-commerce platform in China that launched the PC2M model in 2018. We first identify two uses of PC2M by manufacturers to facilitate product development—platform-enabled big data analytics (PBA) and platform-enabled simulated product trials (PST)—and explore how PC2M enables operations innovations in NPD. Next, drawing on the knowledge-based view, we develop research hypotheses and empirically examine whether PC2M adoption improves new product performance using a large-scale, transactional dataset from JD.com. Through a series of carefully executed analyses, our study consistently finds that use of either PBA or PST in manufacturers’ NPD processes improves new product performance. We also explore how these effects vary across product types and markets with varying new product introduction rates. The findings offer important managerial insights for improving new product success in today's data-rich environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助不会起名o1o采纳,获得10
刚刚
HJJHJH应助方梓言采纳,获得30
刚刚
haoq发布了新的文献求助10
1秒前
CodeCraft应助艾伊采纳,获得30
1秒前
yyyyyyy发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
李健的小迷弟应助zzz采纳,获得10
2秒前
闪闪白秋完成签到,获得积分10
2秒前
old赵应助念念采纳,获得10
3秒前
月月发布了新的文献求助10
4秒前
4秒前
magie完成签到,获得积分10
4秒前
已歌完成签到 ,获得积分10
4秒前
5秒前
suki完成签到,获得积分10
5秒前
qingfeng完成签到,获得积分10
5秒前
5秒前
6秒前
斯文败类应助Qps采纳,获得30
7秒前
tinner完成签到,获得积分10
7秒前
七水合硫酸亚人关注了科研通微信公众号
8秒前
大海来也12138完成签到,获得积分10
8秒前
YY土豆侠完成签到,获得积分10
8秒前
orixero应助小小采纳,获得10
9秒前
yu发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
月月完成签到,获得积分20
11秒前
www发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
han发布了新的文献求助10
12秒前
13秒前
小虎发布了新的文献求助10
14秒前
14秒前
15秒前
聪慧电灯胆完成签到,获得积分10
16秒前
liu发布了新的文献求助10
16秒前
YY_PLY完成签到 ,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5783962
求助须知:如何正确求助?哪些是违规求助? 5680156
关于积分的说明 15462775
捐赠科研通 4913312
什么是DOI,文献DOI怎么找? 2644592
邀请新用户注册赠送积分活动 1592399
关于科研通互助平台的介绍 1547026