阿布茨
土霉素
过氧化物酶
荧光
四环素
检出限
材料科学
化学
核化学
色谱法
有机化学
生物化学
酶
抗生素
抗氧化剂
物理
量子力学
DPPH
作者
Devipriya Gogoi,Chayanika Hazarika,Gayatri Neog,Prosenjit Mridha,Himangsu K. Bora,Manash R. Das,Sabine Szunerits,Rabah Boukherroub
标识
DOI:10.1021/acsami.3c12108
摘要
The greater advantages and wide applications of zero-dimensional nanodots inspire researchers to develop new materials. Therefore, novel borophene quantum dots (QDs) were prepared by a hydrothermal liquid exfoliation technique using water medium. The borophene QDs proved to be highly stable in water medium for more than 120 days. The synthesized borophene QDs revealed intrinsic peroxidase mimetic activity using two chromogenic substrates, 3,3′,5,5′-tetramethylbenzidine (TMB) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)diammonium salt (ABTS). The excellent intrinsic peroxidase activity toward TMB and ABTS substrates was executed using optimal reaction conditions (pH, borophene QDs' concentration, incubation time, and temperature). The formation of hydroxyl radicals in the presence of H2O2 upon TMB and ABTS oxidation played a significant role in the peroxidase reaction. The borophene QDs further proved to be successful for the colorimetric detection of antibiotics (oxytetracycline and tetracycline) using both TMB and ABTS peroxidase substrates. The limit of detection (LOD) for oxytetracycline and tetracycline was found to be 1.10 and 1.02 μM using TMB and 1.03 and 1.02 μM using ABTS chromogenic substrates, respectively. In addition, the fluorescence sensing of oxytetracycline and tetracycline over borophene QDs was also examined. The high fluorescence of borophene QDs (turn ON) was quenched (turn OFF) by oxytetracycline and tetracycline through the inner filter effect mechanism. The LOD of the fluorescence sensing of oxytetracycline and tetracycline was 1.14 and 1.08 μM, respectively. Interestingly, the borophene QDs could be used for the sensitive and selective colorimetric and fluorometric sensing of oxytetracycline and tetracycline after 120 days of storage. The synthesized borophene QDs with long-term stability and real sample analysis provide new insight as nanozymes with higher peroxidase mimetic and fluorescence performance and can be further exploited for medical diagnosis and environmental toxicants' detection.
科研通智能强力驱动
Strongly Powered by AbleSci AI