Quantifying and predicting air quality on different road types in urban environments using mobile monitoring and automated machine learning

计算机科学 空气质量指数 质量(理念) 运输工程 人工智能 机器学习 工程类 地理 认识论 哲学 气象学
作者
Chunping Miao,Zhong‐Ren Peng,Aiwei Cui,Xingyuan He,Fengxian Chen,Kang Lu,Guozhi Jia,Shuai Yu,Wei Chen
出处
期刊:Atmospheric Pollution Research [Elsevier]
卷期号:15 (3): 102015-102015 被引量:1
标识
DOI:10.1016/j.apr.2023.102015
摘要

Traffic emissions are a primary source of air pollution in urban areas, with air quality being influenced by different types of roads characterized by varying traffic volumes and speeds. Comprehending the distribution of air pollutants and the factors influencing it across different road types holds immense significance in endeavors to enhance air quality within urbanized regions. This study recorded concentrations of PM, SO2, NO2, CO, and O3 on different road types in Shenyang, China, using mobile monitoring. The impacts of road type and microclimatic factors on air quality were quantified using automated machine learning. Among the six road types, the suburban highway exhibited the highest PM, SO2, and NO2 pollution. On the other hand, secondary roads experienced the highest levels of CO and O3 pollution. The automated machine learning models provided accurate predictions for PM2.5, PM10, SO2, NO2, and O3 concentrations (R2 = 0.91, 0.83, 0.82, 0.83, 0.79, respectively). Relative humidity played the most significant role in PM2.5 and PM10 concentrations (55.93% and 59.39%, respectively), followed by air temperature (15.36% and 17.73%) and road types (14.28% and 8.74%). Road types contributed 24.33%, 20.60%, 16.61%, and 11.90% to SO2, CO, O3, and NO2 concentrations, respectively. Overall, this study addresses the limitations of previous research and provides a comprehensive understanding of the impact of road types on air pollutant concentrations in urban environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
别拖延了要毕业啊完成签到,获得积分10
刚刚
刚刚
刚刚
Rrr发布了新的文献求助10
刚刚
dingdong发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
2秒前
3秒前
yuan发布了新的文献求助10
3秒前
4秒前
cc完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
5秒前
一一发布了新的文献求助10
5秒前
领导范儿应助Chridy采纳,获得10
5秒前
6秒前
凤凰山发布了新的文献求助10
6秒前
6秒前
孔雨珍发布了新的文献求助10
6秒前
淡定的思松应助通~采纳,获得10
7秒前
7秒前
明亮的八宝粥完成签到,获得积分10
7秒前
mayungui发布了新的文献求助10
7秒前
大型海狮完成签到,获得积分10
7秒前
搜集达人应助科研菜鸟采纳,获得10
8秒前
雨天有伞完成签到,获得积分10
8秒前
蕾子发布了新的文献求助10
8秒前
8秒前
zhui发布了新的文献求助10
8秒前
wanci应助jxcandice采纳,获得10
8秒前
factor发布了新的文献求助10
8秒前
9秒前
泊声发布了新的文献求助20
9秒前
narthon完成签到 ,获得积分10
9秒前
梦幻完成签到,获得积分10
9秒前
1604531786完成签到,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794