Quantifying and predicting air quality on different road types in urban environments using mobile monitoring and automated machine learning

计算机科学 空气质量指数 质量(理念) 运输工程 人工智能 机器学习 工程类 地理 哲学 认识论 气象学
作者
Chunping Miao,Zhong‐Ren Peng,Aiwei Cui,Xingyuan He,Fengxian Chen,Kang Lu,Guozhi Jia,Shuai Yu,Wei Chen
出处
期刊:Atmospheric Pollution Research [Elsevier]
卷期号:15 (3): 102015-102015 被引量:1
标识
DOI:10.1016/j.apr.2023.102015
摘要

Traffic emissions are a primary source of air pollution in urban areas, with air quality being influenced by different types of roads characterized by varying traffic volumes and speeds. Comprehending the distribution of air pollutants and the factors influencing it across different road types holds immense significance in endeavors to enhance air quality within urbanized regions. This study recorded concentrations of PM, SO2, NO2, CO, and O3 on different road types in Shenyang, China, using mobile monitoring. The impacts of road type and microclimatic factors on air quality were quantified using automated machine learning. Among the six road types, the suburban highway exhibited the highest PM, SO2, and NO2 pollution. On the other hand, secondary roads experienced the highest levels of CO and O3 pollution. The automated machine learning models provided accurate predictions for PM2.5, PM10, SO2, NO2, and O3 concentrations (R2 = 0.91, 0.83, 0.82, 0.83, 0.79, respectively). Relative humidity played the most significant role in PM2.5 and PM10 concentrations (55.93% and 59.39%, respectively), followed by air temperature (15.36% and 17.73%) and road types (14.28% and 8.74%). Road types contributed 24.33%, 20.60%, 16.61%, and 11.90% to SO2, CO, O3, and NO2 concentrations, respectively. Overall, this study addresses the limitations of previous research and provides a comprehensive understanding of the impact of road types on air pollutant concentrations in urban environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hesper完成签到,获得积分10
1秒前
漂亮的素发布了新的文献求助10
1秒前
xiaxiao完成签到,获得积分0
2秒前
3秒前
李健应助西瓜采纳,获得10
3秒前
YJH完成签到,获得积分10
3秒前
3秒前
一个小目标完成签到,获得积分10
3秒前
5秒前
Hesper发布了新的文献求助10
6秒前
6秒前
我爱科研发布了新的文献求助10
6秒前
8秒前
9秒前
小刀刀完成签到,获得积分10
9秒前
balabala完成签到,获得积分10
9秒前
眼睛大大叔完成签到,获得积分10
10秒前
10秒前
kelaibing完成签到,获得积分10
10秒前
Singularity应助LHL采纳,获得10
10秒前
萧无尽完成签到,获得积分10
11秒前
11秒前
星辰大海应助李理采纳,获得10
11秒前
12秒前
12秒前
飞龙在天完成签到,获得积分0
14秒前
华仔应助腼腆的鸵鸟采纳,获得10
16秒前
珊珊发布了新的文献求助10
16秒前
16秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
汉堡包应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
烟花应助科研通管家采纳,获得10
17秒前
田様应助科研通管家采纳,获得10
17秒前
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
英俊的铭应助科研通管家采纳,获得10
18秒前
ding应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141768
求助须知:如何正确求助?哪些是违规求助? 2792736
关于积分的说明 7804148
捐赠科研通 2449027
什么是DOI,文献DOI怎么找? 1303050
科研通“疑难数据库(出版商)”最低求助积分说明 626718
版权声明 601260