Quantifying and predicting air quality on different road types in urban environments using mobile monitoring and automated machine learning

计算机科学 空气质量指数 质量(理念) 运输工程 人工智能 机器学习 工程类 地理 哲学 认识论 气象学
作者
Chunping Miao,Zhong‐Ren Peng,Aiwei Cui,Xingyuan He,Fengxian Chen,Kang Lu,Guozhi Jia,Shuai Yu,Wei Chen
出处
期刊:Atmospheric Pollution Research [Elsevier BV]
卷期号:15 (3): 102015-102015 被引量:1
标识
DOI:10.1016/j.apr.2023.102015
摘要

Traffic emissions are a primary source of air pollution in urban areas, with air quality being influenced by different types of roads characterized by varying traffic volumes and speeds. Comprehending the distribution of air pollutants and the factors influencing it across different road types holds immense significance in endeavors to enhance air quality within urbanized regions. This study recorded concentrations of PM, SO2, NO2, CO, and O3 on different road types in Shenyang, China, using mobile monitoring. The impacts of road type and microclimatic factors on air quality were quantified using automated machine learning. Among the six road types, the suburban highway exhibited the highest PM, SO2, and NO2 pollution. On the other hand, secondary roads experienced the highest levels of CO and O3 pollution. The automated machine learning models provided accurate predictions for PM2.5, PM10, SO2, NO2, and O3 concentrations (R2 = 0.91, 0.83, 0.82, 0.83, 0.79, respectively). Relative humidity played the most significant role in PM2.5 and PM10 concentrations (55.93% and 59.39%, respectively), followed by air temperature (15.36% and 17.73%) and road types (14.28% and 8.74%). Road types contributed 24.33%, 20.60%, 16.61%, and 11.90% to SO2, CO, O3, and NO2 concentrations, respectively. Overall, this study addresses the limitations of previous research and provides a comprehensive understanding of the impact of road types on air pollutant concentrations in urban environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助时尚俊驰采纳,获得10
1秒前
粗心的新之完成签到,获得积分10
1秒前
沉默的小天鹅应助Fonseca采纳,获得10
1秒前
cccui发布了新的文献求助10
1秒前
海豚有海完成签到 ,获得积分10
2秒前
哈温完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
916发布了新的文献求助50
4秒前
Unbelievable完成签到,获得积分10
4秒前
津津乐道完成签到,获得积分10
5秒前
yoyo完成签到 ,获得积分10
5秒前
5秒前
erhao完成签到,获得积分10
6秒前
龚幻梦发布了新的文献求助10
6秒前
7秒前
小花发布了新的文献求助10
7秒前
8秒前
三石发布了新的文献求助10
8秒前
生姜发布了新的文献求助10
9秒前
坛坛发布了新的文献求助10
9秒前
东皇太憨完成签到,获得积分10
9秒前
我是老大应助欢欢采纳,获得10
9秒前
Sunthief发布了新的文献求助30
10秒前
yusuf完成签到,获得积分10
10秒前
rookieLi应助kento采纳,获得30
10秒前
传奇3应助li采纳,获得10
10秒前
bluesky完成签到,获得积分10
11秒前
王平完成签到,获得积分10
12秒前
留胡子的白风完成签到,获得积分10
12秒前
我是老大应助大叉烧采纳,获得10
12秒前
13秒前
13秒前
虎虎生威完成签到,获得积分10
14秒前
15秒前
15秒前
时闲应助头发很多采纳,获得10
15秒前
16秒前
maxxie1017完成签到,获得积分10
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987267
求助须知:如何正确求助?哪些是违规求助? 3529546
关于积分的说明 11245872
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804089
邀请新用户注册赠送积分活动 881339
科研通“疑难数据库(出版商)”最低求助积分说明 808653