A Transfer Learning Strategy for Cross-Subject and Cross-Time Hand Gesture Recognition Based on A-Mode Ultrasound

手势 计算机科学 手势识别 学习迁移 人工智能 语音识别 主题(文档) 模式(计算机接口) 计算机视觉 人机交互 图书馆学
作者
Yue Lian,Zongxing Lu,Xin Huang,Qican Shangguan,Ligang Yao,Jie Huang,Zhoujie Liu
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (10): 17183-17192 被引量:6
标识
DOI:10.1109/jsen.2024.3382040
摘要

The hand gesture recognition (HGR) technology in A-mode Ultrasound Human-Machine Interface (HMI-A), based on traditional machine learning, relies on intricate feature reduction methods. Researchers need prior knowledge and multiple validations to achieve the optimal combination of features and machine learning algorithms. Furthermore, anatomical differences in the forearm muscles among different subjects prevent specific subject models from applying to unknown subjects, necessitating repetitive retraining. This increases users' time costs and limits the real-world application of HMI-A. Hence, this paper presents a lightweight one dimensional four branch squeeze-excitation convolutional neural network (4-branch SENet) that outperforms traditional machine learning methods in both feature extraction and gesture classification. Building upon this, a weight fine-tuning strategy using transfer learning enables rapid gesture recognition across subjects and time. Comparative analysis indicates that the freeze feature and fine-tuning fully connected layers result in an average accuracy of 96.35% ± 3.04% and an average runtime of 4.8s ± 0.15s, making it 52.9% faster than subject-specific models. This method further extends the application scenarios of HMI-A in fields such as medical rehabilitation and intelligent prosthetics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
onmyway发布了新的文献求助10
刚刚
悦耳皮带完成签到,获得积分10
1秒前
2秒前
仲夏完成签到,获得积分10
2秒前
zxh发布了新的文献求助10
2秒前
Zy发布了新的文献求助30
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
子车茗应助科研通管家采纳,获得20
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
桐桐应助科研通管家采纳,获得10
7秒前
子车茗应助科研通管家采纳,获得20
7秒前
子车茗应助科研通管家采纳,获得20
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
乐乐应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得100
7秒前
8秒前
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得30
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
大龙哥886应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
情怀应助科研通管家采纳,获得10
8秒前
BowieHuang应助科研通管家采纳,获得10
8秒前
8秒前
shhoing应助科研通管家采纳,获得10
8秒前
小魔女应助科研通管家采纳,获得10
8秒前
无极微光应助科研通管家采纳,获得20
8秒前
10秒前
qwq完成签到,获得积分10
10秒前
11秒前
海藻完成签到,获得积分10
12秒前
12秒前
13秒前
maomao发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560490
求助须知:如何正确求助?哪些是违规求助? 4645747
关于积分的说明 14676028
捐赠科研通 4586936
什么是DOI,文献DOI怎么找? 2516635
邀请新用户注册赠送积分活动 1490182
关于科研通互助平台的介绍 1461055