A Transfer Learning Strategy for Cross-Subject and Cross-Time Hand Gesture Recognition Based on A-Mode Ultrasound

手势 计算机科学 手势识别 学习迁移 人工智能 语音识别 主题(文档) 模式(计算机接口) 计算机视觉 人机交互 图书馆学
作者
Yue Lian,Zongxing Lu,Xin Huang,Qican Shangguan,Ligang Yao,Jie Huang,Zhoujie Liu
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (10): 17183-17192 被引量:6
标识
DOI:10.1109/jsen.2024.3382040
摘要

The hand gesture recognition (HGR) technology in A-mode Ultrasound Human-Machine Interface (HMI-A), based on traditional machine learning, relies on intricate feature reduction methods. Researchers need prior knowledge and multiple validations to achieve the optimal combination of features and machine learning algorithms. Furthermore, anatomical differences in the forearm muscles among different subjects prevent specific subject models from applying to unknown subjects, necessitating repetitive retraining. This increases users' time costs and limits the real-world application of HMI-A. Hence, this paper presents a lightweight one dimensional four branch squeeze-excitation convolutional neural network (4-branch SENet) that outperforms traditional machine learning methods in both feature extraction and gesture classification. Building upon this, a weight fine-tuning strategy using transfer learning enables rapid gesture recognition across subjects and time. Comparative analysis indicates that the freeze feature and fine-tuning fully connected layers result in an average accuracy of 96.35% ± 3.04% and an average runtime of 4.8s ± 0.15s, making it 52.9% faster than subject-specific models. This method further extends the application scenarios of HMI-A in fields such as medical rehabilitation and intelligent prosthetics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小乐儿~完成签到,获得积分10
1秒前
1秒前
wanci应助xingfangshu采纳,获得10
1秒前
香蕉觅云应助xingfangshu采纳,获得10
2秒前
687完成签到,获得积分10
5秒前
领导范儿应助Yeshenyue采纳,获得10
6秒前
wifi发布了新的文献求助10
6秒前
7秒前
7秒前
9秒前
9秒前
脑洞疼应助HH采纳,获得10
10秒前
10秒前
11秒前
11秒前
11秒前
无花果应助凸迩丝儿采纳,获得10
12秒前
善学以致用应助钱罐罐采纳,获得10
12秒前
大人发布了新的文献求助10
13秒前
13秒前
余晶晶发布了新的文献求助10
14秒前
甜甜青旋发布了新的文献求助10
14秒前
深情安青应助危机的芝麻采纳,获得10
15秒前
小夜发布了新的文献求助10
15秒前
王昕钥完成签到,获得积分10
15秒前
Jasper应助科研通管家采纳,获得10
15秒前
在水一方应助科研通管家采纳,获得10
16秒前
乐乐应助科研通管家采纳,获得10
16秒前
16秒前
彭于晏应助科研通管家采纳,获得30
16秒前
Orange应助科研通管家采纳,获得10
16秒前
华仔应助科研通管家采纳,获得10
16秒前
kentonchow应助科研通管家采纳,获得10
16秒前
kentonchow应助科研通管家采纳,获得10
16秒前
乐乐应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
烟花应助科研通管家采纳,获得10
16秒前
小杭76应助科研通管家采纳,获得10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5399809
求助须知:如何正确求助?哪些是违规求助? 4519252
关于积分的说明 14074229
捐赠科研通 4432023
什么是DOI,文献DOI怎么找? 2433408
邀请新用户注册赠送积分活动 1425754
关于科研通互助平台的介绍 1404500