DANNMCTG: Domain-Adversarial Training of Neural Network for multicenter antenatal cardiotocography signal classification

心电图 计算机科学 人工智能 分类器(UML) 模式识别(心理学) 人工神经网络 机器学习 语音识别 胎儿 怀孕 遗传学 生物
作者
Li Chen,Yue Fei,Bin Quan,Yuexing Hao,Qinqun Chen,Guiqing Liu,Xiaomu Luo,Li Li,Hang Wei
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:94: 106259-106259 被引量:1
标识
DOI:10.1016/j.bspc.2024.106259
摘要

Intelligent classification of cardiotocography (CTG) based on machine learning (ML), a useful tool to improve the accuracy of fetal abnormality detection, can assist obstetricians with clinical decisions. With the advancement of information technologies and medical devices, there are development opportunities for multicenter clinical research and obtaining more digital CTG signals. However, most of the existing clinical multicenter CTG datasets are partially annotated and have discrepancies which do not satisfy the ML condition of independent identical distribution. Therefore, this paper focuses on an unsupervised domain adaptation (UDA) algorithm to realize cross-domain intelligent classification of multimodal CTG signals. We propose a method dubbed domain adversarial training of neural network for multicenter CTG (DANNMCTG), which mainly consists of a label classifier, a feature extractor and a domain discriminator. To match different distribution of fetal heart rate (FHR), uterine contraction (UC) and fetal movement (FetMov) signals, we condition the domain alignment on label predictions by defining the multi-linear map. For analysis, two datasets from the hospital central station and home monitoring devices were considered as the source and target domains. The results showed that the accuracy value, F1 value and area under the curve (AUC) value of the DANNMCTG were 71.25%, 76.08% and 0.7705, respectively. This method significantly improved the performance of the deep learning models without exploiting any information in the target domain, and outperformed the state-of-the-art UDA algorithms for CTG classification. In summary, the DANNMCTG can effectively mitigate the influence of domain shift for multicenter intelligent prenatal fetal monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
orixero应助凡迪亚比采纳,获得10
1秒前
今后应助王青文采纳,获得10
1秒前
清风慎独完成签到,获得积分10
2秒前
霜叶完成签到 ,获得积分10
2秒前
Lucas应助结实的绿柳采纳,获得10
2秒前
honey发布了新的文献求助10
2秒前
2秒前
随机波动发布了新的文献求助500
3秒前
英俊的铭应助达达采纳,获得10
3秒前
老张发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
橘子完成签到,获得积分10
5秒前
yqnwa发布了新的文献求助10
5秒前
6秒前
Max发布了新的文献求助10
6秒前
6秒前
唐泽雪穗应助axiang采纳,获得10
6秒前
yoyo完成签到,获得积分10
6秒前
7秒前
112333发布了新的文献求助10
7秒前
rrrred完成签到,获得积分10
8秒前
kk完成签到,获得积分10
8秒前
内向寒云发布了新的文献求助10
8秒前
zw完成签到 ,获得积分10
9秒前
Barton完成签到,获得积分10
9秒前
三个句号发布了新的文献求助10
9秒前
调皮冰旋发布了新的文献求助10
10秒前
tayslay发布了新的文献求助10
10秒前
lucky完成签到 ,获得积分10
11秒前
我是老大应助彪壮的嵩采纳,获得10
11秒前
211JZH发布了新的文献求助10
11秒前
11秒前
义气颦发布了新的文献求助10
11秒前
12秒前
晶生发布了新的文献求助20
12秒前
leidianwu9关注了科研通微信公众号
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5088463
求助须知:如何正确求助?哪些是违规求助? 4303330
关于积分的说明 13411276
捐赠科研通 4129093
什么是DOI,文献DOI怎么找? 2261137
邀请新用户注册赠送积分活动 1265284
关于科研通互助平台的介绍 1199764