DANNMCTG: Domain-Adversarial Training of Neural Network for multicenter antenatal cardiotocography signal classification

心电图 计算机科学 人工智能 分类器(UML) 模式识别(心理学) 人工神经网络 机器学习 胎儿 怀孕 遗传学 生物
作者
Li Chen,Yue Fei,Bin Quan,Yuexing Hao,Qinqun Chen,Guiqing Liu,Xiaomu Luo,Li Li,Hang Wei
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:94: 106259-106259 被引量:1
标识
DOI:10.1016/j.bspc.2024.106259
摘要

Intelligent classification of cardiotocography (CTG) based on machine learning (ML), a useful tool to improve the accuracy of fetal abnormality detection, can assist obstetricians with clinical decisions. With the advancement of information technologies and medical devices, there are development opportunities for multicenter clinical research and obtaining more digital CTG signals. However, most of the existing clinical multicenter CTG datasets are partially annotated and have discrepancies which do not satisfy the ML condition of independent identical distribution. Therefore, this paper focuses on an unsupervised domain adaptation (UDA) algorithm to realize cross-domain intelligent classification of multimodal CTG signals. We propose a method dubbed domain adversarial training of neural network for multicenter CTG (DANNMCTG), which mainly consists of a label classifier, a feature extractor and a domain discriminator. To match different distribution of fetal heart rate (FHR), uterine contraction (UC) and fetal movement (FetMov) signals, we condition the domain alignment on label predictions by defining the multi-linear map. For analysis, two datasets from the hospital central station and home monitoring devices were considered as the source and target domains. The results showed that the accuracy value, F1 value and area under the curve (AUC) value of the DANNMCTG were 71.25%, 76.08% and 0.7705, respectively. This method significantly improved the performance of the deep learning models without exploiting any information in the target domain, and outperformed the state-of-the-art UDA algorithms for CTG classification. In summary, the DANNMCTG can effectively mitigate the influence of domain shift for multicenter intelligent prenatal fetal monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wanci应助我爱学习采纳,获得10
1秒前
1秒前
2秒前
2秒前
alzcor完成签到 ,获得积分10
2秒前
2秒前
简单的晓灵完成签到,获得积分20
3秒前
阿辉发布了新的文献求助10
3秒前
vwegvwdecaf发布了新的文献求助10
4秒前
4秒前
毕襄完成签到,获得积分10
4秒前
77发布了新的文献求助10
5秒前
陈宇发布了新的文献求助10
6秒前
阿宁完成签到,获得积分10
7秒前
cxy发布了新的文献求助20
7秒前
123b完成签到,获得积分10
7秒前
郭郭郭郭发布了新的文献求助10
8秒前
浅絮发布了新的文献求助30
9秒前
9秒前
TTD发布了新的文献求助10
9秒前
10秒前
Aurora完成签到,获得积分10
10秒前
sougardenist完成签到,获得积分10
11秒前
华仔应助诗凌采纳,获得10
12秒前
上官若男应助阿辉采纳,获得10
13秒前
14秒前
我爱学习发布了新的文献求助10
14秒前
tzz发布了新的文献求助10
15秒前
16秒前
沉默烨霖发布了新的文献求助10
17秒前
感动的初雪完成签到,获得积分10
18秒前
乐乐应助嗷嗷嗷采纳,获得10
18秒前
19秒前
20秒前
秋夏完成签到,获得积分10
21秒前
21秒前
李健应助123采纳,获得10
22秒前
顾念发布了新的文献求助10
22秒前
zjz发布了新的文献求助10
23秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 800
Ethnicities: Media, Health, and Coping 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3086818
求助须知:如何正确求助?哪些是违规求助? 2739530
关于积分的说明 7554815
捐赠科研通 2389162
什么是DOI,文献DOI怎么找? 1267013
科研通“疑难数据库(出版商)”最低求助积分说明 613616
版权声明 598592