DANNMCTG: Domain-Adversarial Training of Neural Network for multicenter antenatal cardiotocography signal classification

心电图 计算机科学 人工智能 分类器(UML) 模式识别(心理学) 人工神经网络 机器学习 语音识别 胎儿 怀孕 遗传学 生物
作者
Li Chen,Yue Fei,Bin Quan,Yuexing Hao,Qinqun Chen,Guiqing Liu,Xiaomu Luo,Li Li,Hang Wei
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:94: 106259-106259 被引量:1
标识
DOI:10.1016/j.bspc.2024.106259
摘要

Intelligent classification of cardiotocography (CTG) based on machine learning (ML), a useful tool to improve the accuracy of fetal abnormality detection, can assist obstetricians with clinical decisions. With the advancement of information technologies and medical devices, there are development opportunities for multicenter clinical research and obtaining more digital CTG signals. However, most of the existing clinical multicenter CTG datasets are partially annotated and have discrepancies which do not satisfy the ML condition of independent identical distribution. Therefore, this paper focuses on an unsupervised domain adaptation (UDA) algorithm to realize cross-domain intelligent classification of multimodal CTG signals. We propose a method dubbed domain adversarial training of neural network for multicenter CTG (DANNMCTG), which mainly consists of a label classifier, a feature extractor and a domain discriminator. To match different distribution of fetal heart rate (FHR), uterine contraction (UC) and fetal movement (FetMov) signals, we condition the domain alignment on label predictions by defining the multi-linear map. For analysis, two datasets from the hospital central station and home monitoring devices were considered as the source and target domains. The results showed that the accuracy value, F1 value and area under the curve (AUC) value of the DANNMCTG were 71.25%, 76.08% and 0.7705, respectively. This method significantly improved the performance of the deep learning models without exploiting any information in the target domain, and outperformed the state-of-the-art UDA algorithms for CTG classification. In summary, the DANNMCTG can effectively mitigate the influence of domain shift for multicenter intelligent prenatal fetal monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YE完成签到 ,获得积分20
1秒前
李繁蕊发布了新的文献求助10
1秒前
1秒前
1秒前
可可完成签到,获得积分10
1秒前
2秒前
自由寻菱发布了新的文献求助20
3秒前
俏皮元珊发布了新的文献求助10
3秒前
Owen应助YY采纳,获得10
3秒前
优秀的逊发布了新的文献求助10
3秒前
wzm完成签到,获得积分10
4秒前
一年发3篇JACS完成签到,获得积分10
4秒前
4秒前
SciGPT应助木子采纳,获得10
5秒前
66完成签到,获得积分10
5秒前
赵鹏翔发布了新的文献求助10
5秒前
带象完成签到,获得积分10
5秒前
才露尖尖角完成签到,获得积分10
6秒前
幽默服饰完成签到 ,获得积分10
6秒前
芝士就是力量完成签到,获得积分10
6秒前
xr完成签到 ,获得积分10
6秒前
YaoX发布了新的文献求助10
7秒前
打打应助核桃采纳,获得10
7秒前
Porifera完成签到,获得积分10
7秒前
7秒前
笋蒸鱼发布了新的文献求助10
7秒前
余云开发布了新的文献求助50
8秒前
顾矜应助板凳采纳,获得10
8秒前
带象发布了新的文献求助20
9秒前
10秒前
10秒前
阿曼尼完成签到 ,获得积分10
10秒前
英俊的铭应助LILING采纳,获得10
10秒前
iRan完成签到,获得积分10
11秒前
落忆完成签到 ,获得积分10
11秒前
蜡笔完成签到,获得积分10
11秒前
趁微风不躁完成签到,获得积分10
11秒前
通~发布了新的文献求助10
12秒前
12秒前
张磊完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740