Beef cattle abnormal behaviour recognition based on dual-branch frequency channel temporal excitation and aggregation

频道(广播) 对偶(语法数字) 激发 语音识别 模式识别(心理学) 计算机科学 人工智能 电信 工程类 电气工程 艺术 文学类
作者
Yamin Han,Jie Wu,Hongming Zhang,Mingyu Cai,Yang Sun,Bin Li,Xi-long Feng,J Hao,Hanchen Wang
出处
期刊:Biosystems Engineering [Elsevier BV]
卷期号:241: 28-42
标识
DOI:10.1016/j.biosystemseng.2024.03.006
摘要

The behaviour of beef cattle, especially abnormal behaviours such as mounting, fighting, and running, provides valuable information regarding their health status. Recently, existing methods based on deep convolutional networks have achieved state-of-the-art performance in beef cattle behaviour recognition. However, these methods focus only on the basic motion behaviours of a single cow (e.g. lying and standing) and ignore the abnormal behaviours of group-housed cattle, which further limits their application in an actual farm environment. In this study, we collected a realistic dataset of beef cattle abnormal behaviour called Beef Cattle Abnormal Actions, which was captured in different light environments and on different behavioural area scales. With the proposed dataset, we proposed a Dual-Branch Temporal Excitation and Aggregation with Frequency Channel Attention (DB-TEAF) method. First, a sampling strategy based on differences in image RGB information was proposed to extract representative motion-salient frames from redundant videos. Second, the temporal excitation and aggregation branch with frequency channel attention (TEAF) was introduced to focus attention on the key channels of short- and long-range temporal features. The spatial branch is incorporated into the TEAF branch to obtain the representative spatio-temporal features. In addition, focal loss was used to train the proposed model, which made the learning process aware of valuable samples from abnormal behaviour. Testing with the newly collected dataset verified that the proposed DB-TEAF method achieved superior performance compared to other state-of-the-art approaches. The findings of this study would provide support for recognising the abnormal behaviour of livestock during precision farming.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助aby采纳,获得10
1秒前
传奇3应助LMW采纳,获得10
1秒前
2秒前
生动的鹰完成签到,获得积分10
2秒前
qianqina发布了新的文献求助10
3秒前
3秒前
3秒前
yyyyj发布了新的文献求助10
3秒前
陈佳乐完成签到,获得积分10
4秒前
4秒前
龙抬头完成签到,获得积分10
5秒前
Hello应助renpp822采纳,获得10
5秒前
5秒前
Hardskills发布了新的文献求助10
6秒前
慕青应助QIN采纳,获得10
6秒前
怡然犀牛完成签到,获得积分10
7秒前
7秒前
8秒前
sunnyfish007发布了新的文献求助10
9秒前
9秒前
qianqina完成签到,获得积分10
9秒前
10秒前
xiaoyangchun完成签到,获得积分10
10秒前
微光熠发布了新的文献求助10
10秒前
10秒前
goufufu发布了新的文献求助10
10秒前
睡着的鱼完成签到,获得积分10
10秒前
11秒前
11秒前
Leo应助vivelejrlee采纳,获得20
12秒前
12秒前
lalala发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
14秒前
重回地球发布了新的文献求助10
14秒前
慕青应助refd采纳,获得10
15秒前
keyou发布了新的文献求助10
15秒前
迷路的游侠完成签到,获得积分10
15秒前
16秒前
ding应助mochi采纳,获得10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4573716
求助须知:如何正确求助?哪些是违规求助? 3994026
关于积分的说明 12364353
捐赠科研通 3667205
什么是DOI,文献DOI怎么找? 2021137
邀请新用户注册赠送积分活动 1055281
科研通“疑难数据库(出版商)”最低求助积分说明 942668