Beef cattle abnormal behaviour recognition based on dual-branch frequency channel temporal excitation and aggregation

光学(聚焦) 频道(广播) 肉牛 RGB颜色模型 激发 过程(计算) 钥匙(锁) 深度学习 模式识别(心理学) 卷积神经网络 牲畜 数学 机器学习 计算机科学 人工智能 采样(信号处理) 撒谎
作者
Yamin Han,Jie Wu,Hongming Zhang,Mingyu Cai,Yang Sun,Bin Li,Xilong Feng,J Hao,Hanchen Wang
出处
期刊:Biosystems Engineering [Elsevier]
卷期号:241: 28-42 被引量:5
标识
DOI:10.1016/j.biosystemseng.2024.03.006
摘要

The behaviour of beef cattle, especially abnormal behaviours such as mounting, fighting, and running, provides valuable information regarding their health status. Recently, existing methods based on deep convolutional networks have achieved state-of-the-art performance in beef cattle behaviour recognition. However, these methods focus only on the basic motion behaviours of a single cow (e.g. lying and standing) and ignore the abnormal behaviours of group-housed cattle, which further limits their application in an actual farm environment. In this study, we collected a realistic dataset of beef cattle abnormal behaviour called Beef Cattle Abnormal Actions, which was captured in different light environments and on different behavioural area scales. With the proposed dataset, we proposed a Dual-Branch Temporal Excitation and Aggregation with Frequency Channel Attention (DB-TEAF) method. First, a sampling strategy based on differences in image RGB information was proposed to extract representative motion-salient frames from redundant videos. Second, the temporal excitation and aggregation branch with frequency channel attention (TEAF) was introduced to focus attention on the key channels of short- and long-range temporal features. The spatial branch is incorporated into the TEAF branch to obtain the representative spatio-temporal features. In addition, focal loss was used to train the proposed model, which made the learning process aware of valuable samples from abnormal behaviour. Testing with the newly collected dataset verified that the proposed DB-TEAF method achieved superior performance compared to other state-of-the-art approaches. The findings of this study would provide support for recognising the abnormal behaviour of livestock during precision farming.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怕孤单的鞋垫完成签到,获得积分10
1秒前
2秒前
无限的烧鹅完成签到,获得积分10
2秒前
爱吃鱼的猫完成签到,获得积分10
2秒前
letter完成签到,获得积分10
3秒前
3秒前
XIEQ发布了新的文献求助10
3秒前
3秒前
4秒前
VirSnorlax完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
kevin发布了新的文献求助10
7秒前
8秒前
zzz发布了新的文献求助10
8秒前
wdygao完成签到 ,获得积分10
9秒前
9秒前
11秒前
SciGPT应助裴佳晨采纳,获得10
12秒前
12秒前
13秒前
14秒前
14秒前
Doc_zzzz完成签到,获得积分10
14秒前
kevin完成签到,获得积分20
15秒前
LXZY发布了新的文献求助10
15秒前
852应助刘求助采纳,获得10
15秒前
迷人绮波完成签到,获得积分20
16秒前
kyou完成签到,获得积分10
16秒前
17秒前
xxxx0414完成签到 ,获得积分10
18秒前
西因应助美丽蕨菜子采纳,获得10
18秒前
西因应助美丽蕨菜子采纳,获得10
18秒前
123完成签到,获得积分10
18秒前
18秒前
量子星尘发布了新的文献求助10
19秒前
yangmengyuan发布了新的文献求助10
19秒前
脑洞疼应助滕侑林采纳,获得10
19秒前
桐桐应助风中的青采纳,获得10
21秒前
22秒前
Owen应助淡定星星采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5598801
求助须知:如何正确求助?哪些是违规求助? 4684195
关于积分的说明 14834179
捐赠科研通 4664847
什么是DOI,文献DOI怎么找? 2537406
邀请新用户注册赠送积分活动 1504909
关于科研通互助平台的介绍 1470655