Beef cattle abnormal behaviour recognition based on dual-branch frequency channel temporal excitation and aggregation

频道(广播) 对偶(语法数字) 激发 语音识别 模式识别(心理学) 计算机科学 人工智能 电信 工程类 电气工程 艺术 文学类
作者
Yamin Han,Jie Wu,Hongming Zhang,Mingyu Cai,Yang Sun,Bin Li,Xi-long Feng,J Hao,Hanchen Wang
出处
期刊:Biosystems Engineering [Elsevier BV]
卷期号:241: 28-42
标识
DOI:10.1016/j.biosystemseng.2024.03.006
摘要

The behaviour of beef cattle, especially abnormal behaviours such as mounting, fighting, and running, provides valuable information regarding their health status. Recently, existing methods based on deep convolutional networks have achieved state-of-the-art performance in beef cattle behaviour recognition. However, these methods focus only on the basic motion behaviours of a single cow (e.g. lying and standing) and ignore the abnormal behaviours of group-housed cattle, which further limits their application in an actual farm environment. In this study, we collected a realistic dataset of beef cattle abnormal behaviour called Beef Cattle Abnormal Actions, which was captured in different light environments and on different behavioural area scales. With the proposed dataset, we proposed a Dual-Branch Temporal Excitation and Aggregation with Frequency Channel Attention (DB-TEAF) method. First, a sampling strategy based on differences in image RGB information was proposed to extract representative motion-salient frames from redundant videos. Second, the temporal excitation and aggregation branch with frequency channel attention (TEAF) was introduced to focus attention on the key channels of short- and long-range temporal features. The spatial branch is incorporated into the TEAF branch to obtain the representative spatio-temporal features. In addition, focal loss was used to train the proposed model, which made the learning process aware of valuable samples from abnormal behaviour. Testing with the newly collected dataset verified that the proposed DB-TEAF method achieved superior performance compared to other state-of-the-art approaches. The findings of this study would provide support for recognising the abnormal behaviour of livestock during precision farming.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助yy采纳,获得10
1秒前
墨然然完成签到 ,获得积分10
1秒前
Dr.Li发布了新的文献求助50
1秒前
清浅完成签到,获得积分10
2秒前
王冉冉发布了新的文献求助10
3秒前
4秒前
所所应助zjz采纳,获得30
5秒前
5秒前
小吴同学发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
7秒前
shaocat完成签到 ,获得积分10
7秒前
风中的眼神完成签到,获得积分10
7秒前
CAOHOU应助奋斗水香采纳,获得10
8秒前
俊逸梦蕊完成签到,获得积分10
8秒前
9秒前
典雅牛青关注了科研通微信公众号
9秒前
Xinxxx发布了新的文献求助10
9秒前
illusion完成签到,获得积分10
10秒前
wanci应助王冉冉采纳,获得30
11秒前
树小夏发布了新的文献求助10
12秒前
小吴同学完成签到,获得积分10
12秒前
赘婿应助kk_yang采纳,获得10
13秒前
成就伟祺关注了科研通微信公众号
14秒前
能干的语芙完成签到 ,获得积分10
14秒前
无欲无求傻傻完成签到,获得积分10
14秒前
14秒前
14秒前
尊敬寒松完成签到 ,获得积分10
14秒前
糊涂的麦片完成签到,获得积分10
14秒前
15秒前
15秒前
16秒前
wanci应助wangdafa采纳,获得10
16秒前
竹子co完成签到,获得积分10
16秒前
steventj完成签到,获得积分10
16秒前
yz完成签到 ,获得积分10
17秒前
朴实山兰完成签到,获得积分10
18秒前
tkkdy发布了新的文献求助10
18秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds第二卷 1200
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038657
求助须知:如何正确求助?哪些是违规求助? 3576306
关于积分的说明 11375198
捐赠科研通 3306108
什么是DOI,文献DOI怎么找? 1819379
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815066