Beef cattle abnormal behaviour recognition based on dual-branch frequency channel temporal excitation and aggregation

光学(聚焦) 频道(广播) 肉牛 RGB颜色模型 激发 过程(计算) 钥匙(锁) 深度学习 模式识别(心理学) 卷积神经网络 牲畜 数学 机器学习 计算机科学 人工智能 采样(信号处理) 撒谎
作者
Yamin Han,Jie Wu,Hongming Zhang,Mingyu Cai,Yang Sun,Bin Li,Xilong Feng,J Hao,Hanchen Wang
出处
期刊:Biosystems Engineering [Elsevier BV]
卷期号:241: 28-42 被引量:5
标识
DOI:10.1016/j.biosystemseng.2024.03.006
摘要

The behaviour of beef cattle, especially abnormal behaviours such as mounting, fighting, and running, provides valuable information regarding their health status. Recently, existing methods based on deep convolutional networks have achieved state-of-the-art performance in beef cattle behaviour recognition. However, these methods focus only on the basic motion behaviours of a single cow (e.g. lying and standing) and ignore the abnormal behaviours of group-housed cattle, which further limits their application in an actual farm environment. In this study, we collected a realistic dataset of beef cattle abnormal behaviour called Beef Cattle Abnormal Actions, which was captured in different light environments and on different behavioural area scales. With the proposed dataset, we proposed a Dual-Branch Temporal Excitation and Aggregation with Frequency Channel Attention (DB-TEAF) method. First, a sampling strategy based on differences in image RGB information was proposed to extract representative motion-salient frames from redundant videos. Second, the temporal excitation and aggregation branch with frequency channel attention (TEAF) was introduced to focus attention on the key channels of short- and long-range temporal features. The spatial branch is incorporated into the TEAF branch to obtain the representative spatio-temporal features. In addition, focal loss was used to train the proposed model, which made the learning process aware of valuable samples from abnormal behaviour. Testing with the newly collected dataset verified that the proposed DB-TEAF method achieved superior performance compared to other state-of-the-art approaches. The findings of this study would provide support for recognising the abnormal behaviour of livestock during precision farming.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dtcao发布了新的文献求助10
刚刚
君君完成签到,获得积分10
2秒前
3秒前
3秒前
自觉的黄豆完成签到,获得积分10
3秒前
飞龙在天完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
杨一一发布了新的文献求助10
4秒前
4秒前
l2385865294发布了新的文献求助10
5秒前
orixero应助mxb采纳,获得10
6秒前
翁sir完成签到,获得积分20
8秒前
Akim应助颜颜采纳,获得10
8秒前
9420发布了新的文献求助10
8秒前
丘比特应助张张采纳,获得30
8秒前
发生了什么完成签到 ,获得积分10
9秒前
ybigwhite应助默默诗筠采纳,获得10
10秒前
淡定的一手完成签到,获得积分10
11秒前
阿树不是树完成签到,获得积分10
11秒前
悦耳溪流发布了新的文献求助10
11秒前
12秒前
453452542完成签到,获得积分10
13秒前
13秒前
14秒前
张张完成签到,获得积分10
15秒前
dtcao完成签到,获得积分20
15秒前
科研通AI6应助洁净的画板采纳,获得10
16秒前
张张园完成签到,获得积分10
16秒前
17秒前
18秒前
乐乐应助wang1343259150采纳,获得10
18秒前
石可以发布了新的文献求助10
18秒前
19秒前
许许发布了新的文献求助10
19秒前
lwxlvji完成签到,获得积分10
19秒前
小松鼠完成签到 ,获得积分10
20秒前
漠池发布了新的文献求助10
20秒前
光轮2000发布了新的文献求助10
21秒前
呜呜呜发布了新的文献求助10
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5123274
求助须知:如何正确求助?哪些是违规求助? 4327783
关于积分的说明 13485510
捐赠科研通 4162042
什么是DOI,文献DOI怎么找? 2281160
邀请新用户注册赠送积分活动 1282619
关于科研通互助平台的介绍 1221690