已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Beef cattle abnormal behaviour recognition based on dual-branch frequency channel temporal excitation and aggregation

频道(广播) 对偶(语法数字) 激发 语音识别 模式识别(心理学) 计算机科学 人工智能 电信 工程类 电气工程 艺术 文学类
作者
Yamin Han,Jie Wu,Hongming Zhang,Mingyu Cai,Yang Sun,Bin Li,Xi-long Feng,J Hao,Hanchen Wang
出处
期刊:Biosystems Engineering [Elsevier BV]
卷期号:241: 28-42
标识
DOI:10.1016/j.biosystemseng.2024.03.006
摘要

The behaviour of beef cattle, especially abnormal behaviours such as mounting, fighting, and running, provides valuable information regarding their health status. Recently, existing methods based on deep convolutional networks have achieved state-of-the-art performance in beef cattle behaviour recognition. However, these methods focus only on the basic motion behaviours of a single cow (e.g. lying and standing) and ignore the abnormal behaviours of group-housed cattle, which further limits their application in an actual farm environment. In this study, we collected a realistic dataset of beef cattle abnormal behaviour called Beef Cattle Abnormal Actions, which was captured in different light environments and on different behavioural area scales. With the proposed dataset, we proposed a Dual-Branch Temporal Excitation and Aggregation with Frequency Channel Attention (DB-TEAF) method. First, a sampling strategy based on differences in image RGB information was proposed to extract representative motion-salient frames from redundant videos. Second, the temporal excitation and aggregation branch with frequency channel attention (TEAF) was introduced to focus attention on the key channels of short- and long-range temporal features. The spatial branch is incorporated into the TEAF branch to obtain the representative spatio-temporal features. In addition, focal loss was used to train the proposed model, which made the learning process aware of valuable samples from abnormal behaviour. Testing with the newly collected dataset verified that the proposed DB-TEAF method achieved superior performance compared to other state-of-the-art approaches. The findings of this study would provide support for recognising the abnormal behaviour of livestock during precision farming.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
momochichu发布了新的文献求助10
2秒前
乐观的雅彤完成签到,获得积分10
2秒前
HQQ发布了新的文献求助10
4秒前
Master发布了新的文献求助10
5秒前
HYT发布了新的文献求助10
5秒前
6秒前
哈哈镜阿姐给哈哈镜阿姐的求助进行了留言
6秒前
机灵的灵煌完成签到,获得积分20
8秒前
9秒前
11秒前
Jemma发布了新的文献求助10
11秒前
13秒前
h0jian09完成签到,获得积分10
13秒前
13秒前
晓静完成签到,获得积分10
13秒前
刘蕾发布了新的文献求助10
14秒前
666发布了新的文献求助30
16秒前
hyr发布了新的文献求助10
17秒前
swxsh发布了新的文献求助10
17秒前
SYLH应助HQQ采纳,获得10
19秒前
张包子完成签到 ,获得积分10
20秒前
英姑应助科研通管家采纳,获得10
23秒前
qikkk应助科研通管家采纳,获得10
23秒前
qikkk应助科研通管家采纳,获得10
23秒前
李健应助科研通管家采纳,获得10
23秒前
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
刘蕾完成签到,获得积分10
27秒前
28秒前
大模型应助ZhX采纳,获得60
29秒前
29秒前
在水一方应助自由飞翔采纳,获得10
29秒前
完美世界应助li采纳,获得10
29秒前
小唐发布了新的文献求助10
30秒前
30秒前
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976418
求助须知:如何正确求助?哪些是违规求助? 3520512
关于积分的说明 11203586
捐赠科研通 3257127
什么是DOI,文献DOI怎么找? 1798594
邀请新用户注册赠送积分活动 877804
科研通“疑难数据库(出版商)”最低求助积分说明 806523