Beef cattle abnormal behaviour recognition based on dual-branch frequency channel temporal excitation and aggregation

频道(广播) 对偶(语法数字) 激发 语音识别 模式识别(心理学) 计算机科学 人工智能 电信 工程类 电气工程 艺术 文学类
作者
Yamin Han,Jie Wu,Hongming Zhang,Mingyu Cai,Yang Sun,Bin Li,Xi-long Feng,J Hao,Hanchen Wang
出处
期刊:Biosystems Engineering [Elsevier]
卷期号:241: 28-42
标识
DOI:10.1016/j.biosystemseng.2024.03.006
摘要

The behaviour of beef cattle, especially abnormal behaviours such as mounting, fighting, and running, provides valuable information regarding their health status. Recently, existing methods based on deep convolutional networks have achieved state-of-the-art performance in beef cattle behaviour recognition. However, these methods focus only on the basic motion behaviours of a single cow (e.g. lying and standing) and ignore the abnormal behaviours of group-housed cattle, which further limits their application in an actual farm environment. In this study, we collected a realistic dataset of beef cattle abnormal behaviour called Beef Cattle Abnormal Actions, which was captured in different light environments and on different behavioural area scales. With the proposed dataset, we proposed a Dual-Branch Temporal Excitation and Aggregation with Frequency Channel Attention (DB-TEAF) method. First, a sampling strategy based on differences in image RGB information was proposed to extract representative motion-salient frames from redundant videos. Second, the temporal excitation and aggregation branch with frequency channel attention (TEAF) was introduced to focus attention on the key channels of short- and long-range temporal features. The spatial branch is incorporated into the TEAF branch to obtain the representative spatio-temporal features. In addition, focal loss was used to train the proposed model, which made the learning process aware of valuable samples from abnormal behaviour. Testing with the newly collected dataset verified that the proposed DB-TEAF method achieved superior performance compared to other state-of-the-art approaches. The findings of this study would provide support for recognising the abnormal behaviour of livestock during precision farming.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜甜圈发布了新的文献求助10
刚刚
AARON完成签到,获得积分10
刚刚
Muxi发布了新的文献求助10
2秒前
科研通AI2S应助大有阳光采纳,获得20
2秒前
4秒前
科研通AI2S应助EMM采纳,获得10
5秒前
6秒前
js完成签到,获得积分10
6秒前
8秒前
高贵的迎蕾完成签到,获得积分10
8秒前
zhou发布了新的文献求助10
8秒前
caspianhuang完成签到,获得积分10
9秒前
9秒前
华仔应助zzzsss采纳,获得10
9秒前
笑我孤寒完成签到,获得积分10
11秒前
11秒前
AARON发布了新的文献求助10
11秒前
星星完成签到 ,获得积分10
12秒前
顾矜应助seven采纳,获得10
12秒前
小马甲应助123采纳,获得10
14秒前
14秒前
15秒前
善学以致用应助绍成采纳,获得10
16秒前
NexusExplorer应助重要冲采纳,获得10
17秒前
18秒前
菜鸟队长完成签到,获得积分10
19秒前
mouxq发布了新的文献求助10
20秒前
20秒前
不懂白完成签到,获得积分10
23秒前
24秒前
8R60d8应助科研通管家采纳,获得10
25秒前
Ava应助清秀的大山采纳,获得10
25秒前
Hello应助科研通管家采纳,获得30
25秒前
25秒前
传奇3应助科研通管家采纳,获得10
25秒前
隐形曼青应助科研通管家采纳,获得30
25秒前
科目三应助科研通管家采纳,获得10
25秒前
爱静静应助科研通管家采纳,获得10
25秒前
8R60d8应助科研通管家采纳,获得10
26秒前
不潮薯饼应助科研通管家采纳,获得10
26秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3261058
求助须知:如何正确求助?哪些是违规求助? 2901992
关于积分的说明 8318508
捐赠科研通 2571708
什么是DOI,文献DOI怎么找? 1397242
科研通“疑难数据库(出版商)”最低求助积分说明 653684
邀请新用户注册赠送积分活动 632216