Integration of electronic nose, electronic tongue, and colorimeter in combination with chemometrics for monitoring the fermentation process of Tremella fuciformis

电子鼻 电子舌 化学计量学 偏最小二乘回归 化学 主成分分析 色度计 人工智能 发酵 传感器融合 模式识别(心理学) 食品科学 机器学习 色谱法 计算机科学 量子力学 品味 物理
作者
Yefeng Zhou,Zilong Zhang,Yan He,Ping Gao,Hua Zhang,Xia Ma
出处
期刊:Talanta [Elsevier BV]
卷期号:274: 126006-126006 被引量:7
标识
DOI:10.1016/j.talanta.2024.126006
摘要

This study proposes an efficient method for monitoring the submerged fermentation process of Tremella fuciformis (T. fuciformis) by integrating electronic nose (e-nose), electronic tongue (e-tongue), and colorimeter sensors using a data fusion strategy. Chemometrics is employed to establish qualitative identification and quantitative prediction models. The Pearson correlation analysis was applied to extract features from the e-nose and tongue sensor arrays. The optimal sensor arrays for monitoring the deep fermentation process of T. fuciformis were obtained, and four different data fusion methods were developed by incorporating the colorimeter data features. To achieve qualitative identification, the physicochemical data and principal component analysis (PCA) results are utilized to determine three stages of the fermentation process. The fusion signal based on full features proves to be the optimal data fusion method, exhibiting the highest accuracy across different models. Notably, random forest (RF) is shown to be the most accurate pattern recognition method in this paper. For quantitative prediction, partial least squares regression (PLSR) and support vector regression (SVR) are employed to predict the sugar content and dry cell weight during fermentation. The best respective predictive R2 values for reducing sugar, tremella polysaccharide and dry cell weight are found to be 0.965, 0.988, and 0.970. Furthermore, due to its ability to capture nonlinear data relationships, SVR had superior performance in prediction modeling than PLSR. The results demonstrated that the combination of electronic sensor fusion signals and chemometrics provides a promising method for effectively monitoring T. fuciformis fermentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
guobiao发布了新的文献求助10
刚刚
1秒前
1秒前
ling22发布了新的文献求助10
1秒前
2秒前
SciGPT应助ywb采纳,获得10
2秒前
3秒前
3秒前
4秒前
科目三应助TIGun采纳,获得10
5秒前
研友_VZG7GZ应助小田心采纳,获得10
6秒前
joan发布了新的文献求助30
6秒前
robin发布了新的文献求助10
6秒前
xkxkii发布了新的文献求助10
6秒前
6秒前
Blank发布了新的文献求助10
7秒前
山花浪漫应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
华仔应助科研通管家采纳,获得10
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
wanci应助科研通管家采纳,获得10
8秒前
8秒前
科研通AI5应助科研通管家采纳,获得30
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
娃哈哈完成签到,获得积分10
8秒前
彭于彦祖应助科研通管家采纳,获得20
9秒前
chanyi完成签到,获得积分10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
orixero应助科研通管家采纳,获得10
9秒前
汉堡包应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
神明发布了新的文献求助30
9秒前
10秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738049
求助须知:如何正确求助?哪些是违规求助? 3281565
关于积分的说明 10026096
捐赠科研通 2998320
什么是DOI,文献DOI怎么找? 1645228
邀请新用户注册赠送积分活动 782682
科研通“疑难数据库(出版商)”最低求助积分说明 749882