Integration of electronic nose, electronic tongue, and colorimeter in combination with chemometrics for monitoring the fermentation process of Tremella fuciformis

电子鼻 电子舌 化学计量学 偏最小二乘回归 化学 主成分分析 色度计 人工智能 发酵 传感器融合 模式识别(心理学) 食品科学 机器学习 色谱法 计算机科学 量子力学 品味 物理
作者
Yefeng Zhou,Zilong Zhang,Yan He,Ping Gao,Hua Zhang,Xia Ma
出处
期刊:Talanta [Elsevier]
卷期号:274: 126006-126006 被引量:2
标识
DOI:10.1016/j.talanta.2024.126006
摘要

This study proposes an efficient method for monitoring the submerged fermentation process of Tremella fuciformis (T. fuciformis) by integrating electronic nose (e-nose), electronic tongue (e-tongue), and colorimeter sensors using a data fusion strategy. Chemometrics is employed to establish qualitative identification and quantitative prediction models. The Pearson correlation analysis was applied to extract features from the e-nose and tongue sensor arrays. The optimal sensor arrays for monitoring the deep fermentation process of T. fuciformis were obtained, and four different data fusion methods were developed by incorporating the colorimeter data features. To achieve qualitative identification, the physicochemical data and principal component analysis (PCA) results are utilized to determine three stages of the fermentation process. The fusion signal based on full features proves to be the optimal data fusion method, exhibiting the highest accuracy across different models. Notably, random forest (RF) is shown to be the most accurate pattern recognition method in this paper. For quantitative prediction, partial least squares regression (PLSR) and support vector regression (SVR) are employed to predict the sugar content and dry cell weight during fermentation. The best respective predictive R2 values for reducing sugar, tremella polysaccharide and dry cell weight are found to be 0.965, 0.988, and 0.970. Furthermore, due to its ability to capture nonlinear data relationships, SVR had superior performance in prediction modeling than PLSR. The results demonstrated that the combination of electronic sensor fusion signals and chemometrics provides a promising method for effectively monitoring T. fuciformis fermentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南宫初兰发布了新的文献求助10
1秒前
科研通AI2S应助Flash采纳,获得10
1秒前
1秒前
Andy1409发布了新的文献求助10
1秒前
1秒前
2秒前
pasdzxcfvgb发布了新的文献求助10
2秒前
2秒前
3秒前
深情安青应助科研小白兔采纳,获得10
3秒前
平淡夏云完成签到,获得积分10
3秒前
丘比特应助松本润不足采纳,获得10
4秒前
巫马尔槐发布了新的文献求助10
4秒前
科研通AI2S应助山山而川采纳,获得10
4秒前
11完成签到,获得积分10
4秒前
无辜不惜发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
能干断缘完成签到,获得积分10
7秒前
7秒前
达到顶峰发布了新的文献求助10
8秒前
8秒前
顾矜应助南宫初兰采纳,获得10
8秒前
...发布了新的文献求助10
8秒前
慕青应助动听的老鼠采纳,获得10
8秒前
8秒前
NexusExplorer应助栗子采纳,获得10
9秒前
烟花应助文献全都要采纳,获得10
9秒前
英姑应助栗子采纳,获得10
9秒前
慕青应助栗子采纳,获得10
10秒前
英姑应助栗子采纳,获得10
10秒前
科研通AI2S应助栗子采纳,获得10
10秒前
科研通AI2S应助栗子采纳,获得10
10秒前
科研通AI2S应助栗子采纳,获得10
10秒前
科研通AI2S应助栗子采纳,获得10
10秒前
10秒前
科研通AI2S应助Fan采纳,获得10
10秒前
qin希望应助shusz采纳,获得10
12秒前
阿珩发布了新的文献求助10
12秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149112
求助须知:如何正确求助?哪些是违规求助? 2800154
关于积分的说明 7838819
捐赠科研通 2457690
什么是DOI,文献DOI怎么找? 1307972
科研通“疑难数据库(出版商)”最低求助积分说明 628363
版权声明 601706