Deep reinforcement learning algorithm based ramp merging decision model

强化学习 计算机科学 人工智能 机器学习 算法
作者
Zeyu Chen,Yu Du,Anni Jiang,Siqi Miao
标识
DOI:10.1177/09544070241239760
摘要

On-ramp merge is a complex traffic scenario in autonomous driving. Because of the uncertainty of the driving environment, most rule-based models cannot solve such a problem. This paper designs a ramp merging decision model based on deep deterministic policy gradient algorithm (DDPG) to solve the vehicle merging problem. To address the problems of slow algorithm merging and poor robustness of previous deep reinforcement learning algorithms in the field of intelligent vehicle ramp merging leading to the low success rate of intelligent vehicle merging, first, we introduce a simple recurrent unit (SRU) for extracting intelligent vehicle states and environment features and use the DDPG algorithm for intelligent vehicle decision making. Second, the experience playback pool of DDPG algorithm is improved by using priority sampling instead of uniform sampling. Finally, a multi-objective reward function is set up during training, considering factors such as safety and efficiency. The simulation experiments show that the improved algorithm improves the merging speed of the model, reduces the collision rate, and enables the vehicle to make more reasonable decisions. In addition, the superiority of the method is demonstrated by comparing with the advanced method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ahsndm完成签到,获得积分20
刚刚
smilence完成签到,获得积分20
刚刚
情怀应助nn采纳,获得10
刚刚
1秒前
1秒前
科研通AI5应助星宿陨采纳,获得10
1秒前
2秒前
玉宝儿完成签到,获得积分20
2秒前
大力的月光完成签到,获得积分10
2秒前
4秒前
4秒前
Ahsndm发布了新的文献求助10
4秒前
zqw199827完成签到,获得积分10
4秒前
好巧完成签到,获得积分10
5秒前
7秒前
7秒前
LUMO发布了新的文献求助10
8秒前
8秒前
xiaoran发布了新的文献求助10
9秒前
古月发布了新的文献求助10
10秒前
清秀初柳发布了新的文献求助10
10秒前
colormeblue完成签到,获得积分10
10秒前
老杨完成签到,获得积分20
13秒前
在水一方应助啦啦啦采纳,获得10
13秒前
14秒前
14秒前
15秒前
15秒前
科目三应助jayskang采纳,获得10
16秒前
科研通AI5应助sunshine采纳,获得10
18秒前
18秒前
所所应助溏心蛋采纳,获得10
19秒前
GONGLI完成签到 ,获得积分10
19秒前
科研通AI5应助占囧采纳,获得10
19秒前
大模型应助徐一羊采纳,获得10
21秒前
搜集达人应助1111采纳,获得10
21秒前
小新一护发布了新的文献求助10
23秒前
23秒前
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3516009
求助须知:如何正确求助?哪些是违规求助? 3098158
关于积分的说明 9238366
捐赠科研通 2793178
什么是DOI,文献DOI怎么找? 1532872
邀请新用户注册赠送积分活动 712408
科研通“疑难数据库(出版商)”最低求助积分说明 707256