Causal connectivity measures for pulse-output network reconstruction: Analysis and applications

因果关系(物理学) 格兰杰因果关系 成对比较 传递熵 维数之咒 计算机科学 人工神经网络 度量(数据仓库) 因果模型 计量经济学 人工智能 数学 数据挖掘 机器学习 物理 统计 最大熵原理 量子力学
作者
Zhong-qi K. Tian,Kai Chen,Songting Li,David W. McLaughlin,Douglas Zhou
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:121 (14) 被引量:1
标识
DOI:10.1073/pnas.2305297121
摘要

The causal connectivity of a network is often inferred to understand network function. It is arguably acknowledged that the inferred causal connectivity relies on the causality measure one applies, and it may differ from the network’s underlying structural connectivity. However, the interpretation of causal connectivity remains to be fully clarified, in particular, how causal connectivity depends on causality measures and how causal connectivity relates to structural connectivity. Here, we focus on nonlinear networks with pulse signals as measured output, e.g., neural networks with spike output, and address the above issues based on four commonly utilized causality measures, i.e., time-delayed correlation coefficient, time-delayed mutual information, Granger causality, and transfer entropy. We theoretically show how these causality measures are related to one another when applied to pulse signals. Taking a simulated Hodgkin–Huxley network and a real mouse brain network as two illustrative examples, we further verify the quantitative relations among the four causality measures and demonstrate that the causal connectivity inferred by any of the four well coincides with the underlying network structural connectivity, therefore illustrating a direct link between the causal and structural connectivity. We stress that the structural connectivity of pulse-output networks can be reconstructed pairwise without conditioning on the global information of all other nodes in a network, thus circumventing the curse of dimensionality. Our framework provides a practical and effective approach for pulse-output network reconstruction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉域人发布了新的文献求助10
刚刚
leilei发布了新的文献求助10
刚刚
FashionBoy应助夜之枫采纳,获得10
1秒前
丘比特应助nimama采纳,获得10
1秒前
1秒前
謃河鷺起完成签到,获得积分10
1秒前
光亮友安发布了新的文献求助10
2秒前
WW完成签到,获得积分20
2秒前
舒心远侵发布了新的文献求助10
2秒前
菜菜发布了新的文献求助10
2秒前
撒旦完成签到,获得积分20
2秒前
hyjhhy发布了新的文献求助10
3秒前
深情安青应助jin采纳,获得10
3秒前
Jasper应助仁爱晓瑶采纳,获得10
3秒前
心灵美砖头完成签到,获得积分10
4秒前
小二郎应助luoyulin采纳,获得10
4秒前
5秒前
辛勤的外套完成签到,获得积分10
5秒前
跳跃的易云完成签到 ,获得积分10
5秒前
5秒前
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
5秒前
小刘鸭完成签到,获得积分20
5秒前
田様应助科研通管家采纳,获得10
5秒前
弥漫完成签到,获得积分10
6秒前
不配.应助科研通管家采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
烟花应助科研通管家采纳,获得10
6秒前
小二郎应助科研通管家采纳,获得20
6秒前
6秒前
桐桐应助科研通管家采纳,获得10
6秒前
6秒前
大模型应助科研通管家采纳,获得10
6秒前
zyfqpc应助科研通管家采纳,获得10
6秒前
李大爷的科研完成签到 ,获得积分10
6秒前
殷志远发布了新的文献求助10
7秒前
冷酷的小之完成签到,获得积分10
7秒前
leilei完成签到,获得积分10
7秒前
8秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144780
求助须知:如何正确求助?哪些是违规求助? 2796171
关于积分的说明 7818496
捐赠科研通 2452363
什么是DOI,文献DOI怎么找? 1304950
科研通“疑难数据库(出版商)”最低求助积分说明 627377
版权声明 601449