Causal connectivity measures for pulse-output network reconstruction: Analysis and applications

因果关系(物理学) 格兰杰因果关系 成对比较 传递熵 维数之咒 计算机科学 人工神经网络 度量(数据仓库) 因果模型 计量经济学 人工智能 数学 数据挖掘 机器学习 物理 统计 最大熵原理 量子力学
作者
Zhong-qi K. Tian,Kai Chen,Songting Li,David W. McLaughlin,Douglas Zhou
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:121 (14) 被引量:1
标识
DOI:10.1073/pnas.2305297121
摘要

The causal connectivity of a network is often inferred to understand network function. It is arguably acknowledged that the inferred causal connectivity relies on the causality measure one applies, and it may differ from the network’s underlying structural connectivity. However, the interpretation of causal connectivity remains to be fully clarified, in particular, how causal connectivity depends on causality measures and how causal connectivity relates to structural connectivity. Here, we focus on nonlinear networks with pulse signals as measured output, e.g., neural networks with spike output, and address the above issues based on four commonly utilized causality measures, i.e., time-delayed correlation coefficient, time-delayed mutual information, Granger causality, and transfer entropy. We theoretically show how these causality measures are related to one another when applied to pulse signals. Taking a simulated Hodgkin–Huxley network and a real mouse brain network as two illustrative examples, we further verify the quantitative relations among the four causality measures and demonstrate that the causal connectivity inferred by any of the four well coincides with the underlying network structural connectivity, therefore illustrating a direct link between the causal and structural connectivity. We stress that the structural connectivity of pulse-output networks can be reconstructed pairwise without conditioning on the global information of all other nodes in a network, thus circumventing the curse of dimensionality. Our framework provides a practical and effective approach for pulse-output network reconstruction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
所所应助yuko采纳,获得10
1秒前
1秒前
2秒前
4秒前
细腻的惜儿完成签到,获得积分10
4秒前
无花果应助开心的桔子采纳,获得10
5秒前
one完成签到,获得积分20
5秒前
5秒前
zfs发布了新的文献求助10
5秒前
5秒前
祝莞发布了新的文献求助10
6秒前
6秒前
GWZZ发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
旷意完成签到,获得积分10
8秒前
8秒前
8秒前
zjq完成签到,获得积分10
8秒前
8秒前
WM发布了新的文献求助10
9秒前
Akim应助小沈采纳,获得10
9秒前
猪猪hero发布了新的文献求助30
10秒前
10秒前
10秒前
10秒前
10秒前
11秒前
YY完成签到 ,获得积分10
11秒前
YifanWang应助彪壮的柜子采纳,获得10
11秒前
mayberichard发布了新的文献求助10
11秒前
开心就好发布了新的文献求助10
11秒前
柯善鹏发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
yongkun发布了新的文献求助10
12秒前
JYXCJ发布了新的文献求助10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951249
求助须知:如何正确求助?哪些是违规求助? 3496668
关于积分的说明 11083529
捐赠科研通 3227087
什么是DOI,文献DOI怎么找? 1784228
邀请新用户注册赠送积分活动 868269
科研通“疑难数据库(出版商)”最低求助积分说明 801095