三阴性乳腺癌
封锁
癌症研究
CD8型
医学
乳腺癌
免疫学
癌症
免疫系统
受体
内科学
作者
Jie Xia,Lixing Zhang,Xilei Peng,Juchuanli Tu,Siqin Li,Xueyan He,Fengkai Li,Jiankun Qiang,Haonan Dong,Qiaodan Deng,Cuicui Liu,Jiahui Xu,Rui Zhang,Quentin Liu,Guohong Hu,Chong Liu,Yi‐Zhou Jiang,Zhi‐Ming Shao,Ceshi Chen,Suling Liu
出处
期刊:Cancer Research
[American Association for Cancer Research]
日期:2024-04-24
被引量:2
标识
DOI:10.1158/0008-5472.can-23-3429
摘要
Abstract Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with limited therapeutic options. Interleukin-1 receptor type 2 (IL1R2) promotes breast tumor-initiating cell (BTIC) self-renewal and tumor growth in TNBC, indicating that targeting it could improve patient treatment. Here, we observed that IL1R2 blockade strongly attenuated macrophage recruitment and the polarization of tumor-associated macrophages (TAMs) to inhibit BTIC self-renewal and CD8+ T cell exhaustion, which resulted in reduced tumor burden and prolonged survival in TNBC mouse models. IL1R2 activation by TAM-derived IL1β increased PD-L1 expression by interacting with the transcription factor yin yang 1 (YY1) and inducing YY1 ubiquitination and proteasomal degradation in both TAMs and TNBC cells. Loss of YY1 alleviated the transcriptional repression of c-Fos, which is a transcriptional activator of PD-L1. Combined treatment with an IL1R2-neutralizing antibody and anti-PD-1 led to enhanced anti-tumor efficacy and reduced TAMs, BTICs, and exhausted CD8+ T cells. These results suggest that IL1R2 blockade might be a strategy to potentiate immune checkpoint blockade efficacy in TNBC to improve patient outcomes.
科研通智能强力驱动
Strongly Powered by AbleSci AI