亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CS2DIPs: Unsupervised HSI Super-Resolution Using Coupled Spatial and Spectral DIPs

高光谱成像 计算机科学 多光谱图像 人工智能 图像分辨率 模式识别(心理学) 矩阵分解 特征向量 物理 量子力学
作者
Fang Yuan,Yipeng Liu,Chong‐Yung Chi,Zhen Long,Ce Zhu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 3090-3101 被引量:1
标识
DOI:10.1109/tip.2024.3390582
摘要

In recent years, fusing high spatial resolution multispectral images (HR-MSIs) and low spatial resolution hyperspectral images (LR-HSIs) has become a widely used approach for hyperspectral image super-resolution (HSI-SR). Various unsupervised HSI-SR methods based on deep image prior (DIP) have gained wide popularity thanks to no pre-training requirement. However, DIP-based methods often demonstrate mediocre performance in extracting latent information from the data. To resolve this performance deficiency, we propose a coupled spatial and spectral deep image priors (CS2DIPs) method for the fusion of an HR-MSI and an LR-HSI into an HR-HSI. Specifically, we integrate the nonnegative matrix-vector tensor factorization (NMVTF) into the DIP framework to jointly learn the abundance tensor and spectral feature matrix. The two coupled DIPs are designed to capture essential spatial and spectral features in parallel from the observed HR-MSI and LR-HSI, respectively, which are then used to guide the generation of the abundance tensor and spectral signature matrix for the fusion of the HSI-SR by mode-3 tensor product, meanwhile taking some inherent physical constraints into account. Free from any training data, the proposed CS2DIPs can effectively capture rich spatial and spectral information. As a result, it exhibits much superior performance and convergence speed over most existing DIP-based methods. Extensive experiments are provided to demonstrate its state-of-the-art overall performance including comparison with benchmark peer methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Chen完成签到 ,获得积分10
11秒前
25秒前
郭敬一发布了新的文献求助10
34秒前
嘻嘻完成签到,获得积分10
55秒前
郭敬一完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Chris发布了新的文献求助10
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
是真的完成签到 ,获得积分10
2分钟前
852应助sujinyu采纳,获得10
2分钟前
3分钟前
3分钟前
sujinyu发布了新的文献求助10
3分钟前
xmsyq完成签到 ,获得积分10
4分钟前
小丑鱼儿完成签到 ,获得积分10
4分钟前
得咎完成签到 ,获得积分10
4分钟前
bjcyqz完成签到,获得积分10
4分钟前
5分钟前
fdu_sf发布了新的文献求助10
5分钟前
情怀应助fdu_sf采纳,获得10
5分钟前
Hvginn完成签到,获得积分10
6分钟前
catherine完成签到,获得积分10
6分钟前
Lighters完成签到 ,获得积分10
7分钟前
7分钟前
电量过低完成签到 ,获得积分10
7分钟前
量子星尘发布了新的文献求助10
7分钟前
CodeCraft应助lei采纳,获得10
7分钟前
7分钟前
7分钟前
量子星尘发布了新的文献求助10
7分钟前
8分钟前
lei发布了新的文献求助10
8分钟前
鲜橙完成签到 ,获得积分10
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780506
求助须知:如何正确求助?哪些是违规求助? 5656754
关于积分的说明 15453250
捐赠科研通 4911100
什么是DOI,文献DOI怎么找? 2643307
邀请新用户注册赠送积分活动 1590976
关于科研通互助平台的介绍 1545479