CS2DIPs: Unsupervised HSI Super-Resolution Using Coupled Spatial and Spectral DIPs

高光谱成像 计算机科学 多光谱图像 人工智能 图像分辨率 模式识别(心理学) 矩阵分解 特征向量 物理 量子力学
作者
Fang Yuan,Yipeng Liu,Chong‐Yung Chi,Zhen Long,Ce Zhu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 3090-3101 被引量:1
标识
DOI:10.1109/tip.2024.3390582
摘要

In recent years, fusing high spatial resolution multispectral images (HR-MSIs) and low spatial resolution hyperspectral images (LR-HSIs) has become a widely used approach for hyperspectral image super-resolution (HSI-SR). Various unsupervised HSI-SR methods based on deep image prior (DIP) have gained wide popularity thanks to no pre-training requirement. However, DIP-based methods often demonstrate mediocre performance in extracting latent information from the data. To resolve this performance deficiency, we propose a coupled spatial and spectral deep image priors (CS2DIPs) method for the fusion of an HR-MSI and an LR-HSI into an HR-HSI. Specifically, we integrate the nonnegative matrix-vector tensor factorization (NMVTF) into the DIP framework to jointly learn the abundance tensor and spectral feature matrix. The two coupled DIPs are designed to capture essential spatial and spectral features in parallel from the observed HR-MSI and LR-HSI, respectively, which are then used to guide the generation of the abundance tensor and spectral signature matrix for the fusion of the HSI-SR by mode-3 tensor product, meanwhile taking some inherent physical constraints into account. Free from any training data, the proposed CS2DIPs can effectively capture rich spatial and spectral information. As a result, it exhibits much superior performance and convergence speed over most existing DIP-based methods. Extensive experiments are provided to demonstrate its state-of-the-art overall performance including comparison with benchmark peer methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
郁金香发布了新的文献求助10
2秒前
魔幻的谷兰完成签到,获得积分10
2秒前
JJJJJJ完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
dryyu发布了新的文献求助10
3秒前
英俊的铭应助自信大雁采纳,获得10
4秒前
zhouyane完成签到,获得积分10
4秒前
充电宝应助忘崽子小拳头采纳,获得10
4秒前
彩色一手发布了新的文献求助10
4秒前
津津乐道完成签到,获得积分10
4秒前
Sky完成签到,获得积分10
4秒前
TT完成签到,获得积分10
4秒前
DRDOC完成签到,获得积分10
4秒前
岁岁平安完成签到,获得积分10
5秒前
情怀应助hgc采纳,获得10
5秒前
LL完成签到,获得积分10
5秒前
Fe2O3发布了新的文献求助10
6秒前
欲目发布了新的文献求助10
6秒前
orixero应助mariawang采纳,获得10
7秒前
Illich完成签到,获得积分10
7秒前
depurge发布了新的文献求助10
7秒前
alice完成签到,获得积分10
7秒前
恸哭的千鸟完成签到,获得积分10
7秒前
乌乌完成签到,获得积分10
7秒前
十四应助冷静苗条采纳,获得10
7秒前
热爱科研的贝完成签到,获得积分10
7秒前
1111发布了新的文献求助10
7秒前
喝儿何完成签到,获得积分10
8秒前
郁金香完成签到,获得积分20
8秒前
跳跃雨泽完成签到,获得积分10
9秒前
里已经完成签到,获得积分10
9秒前
晚云烟月完成签到,获得积分10
9秒前
9秒前
zhuyimin913发布了新的文献求助10
9秒前
訫乐完成签到,获得积分10
9秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009167
求助须知:如何正确求助?哪些是违规求助? 3549013
关于积分的说明 11300491
捐赠科研通 3283494
什么是DOI,文献DOI怎么找? 1810370
邀请新用户注册赠送积分活动 886146
科研通“疑难数据库(出版商)”最低求助积分说明 811259