CS2DIPs: Unsupervised HSI Super-Resolution Using Coupled Spatial and Spectral DIPs

高光谱成像 计算机科学 多光谱图像 人工智能 图像分辨率 模式识别(心理学) 矩阵分解 特征向量 物理 量子力学
作者
Fang Yuan,Yipeng Liu,Chong‐Yung Chi,Zhen Long,Ce Zhu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 3090-3101 被引量:1
标识
DOI:10.1109/tip.2024.3390582
摘要

In recent years, fusing high spatial resolution multispectral images (HR-MSIs) and low spatial resolution hyperspectral images (LR-HSIs) has become a widely used approach for hyperspectral image super-resolution (HSI-SR). Various unsupervised HSI-SR methods based on deep image prior (DIP) have gained wide popularity thanks to no pre-training requirement. However, DIP-based methods often demonstrate mediocre performance in extracting latent information from the data. To resolve this performance deficiency, we propose a coupled spatial and spectral deep image priors (CS2DIPs) method for the fusion of an HR-MSI and an LR-HSI into an HR-HSI. Specifically, we integrate the nonnegative matrix-vector tensor factorization (NMVTF) into the DIP framework to jointly learn the abundance tensor and spectral feature matrix. The two coupled DIPs are designed to capture essential spatial and spectral features in parallel from the observed HR-MSI and LR-HSI, respectively, which are then used to guide the generation of the abundance tensor and spectral signature matrix for the fusion of the HSI-SR by mode-3 tensor product, meanwhile taking some inherent physical constraints into account. Free from any training data, the proposed CS2DIPs can effectively capture rich spatial and spectral information. As a result, it exhibits much superior performance and convergence speed over most existing DIP-based methods. Extensive experiments are provided to demonstrate its state-of-the-art overall performance including comparison with benchmark peer methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yhb关闭了yhb文献求助
刚刚
1秒前
li完成签到,获得积分20
1秒前
谭yuanjun关注了科研通微信公众号
1秒前
Hello应助shanks采纳,获得10
3秒前
云泥完成签到 ,获得积分10
4秒前
zou发布了新的文献求助10
4秒前
5秒前
just flow发布了新的文献求助10
6秒前
6秒前
欣慰汉堡完成签到,获得积分20
6秒前
Cker完成签到,获得积分10
6秒前
深情安青应助ffhjlfwex采纳,获得10
8秒前
李爱国应助勤能补拙采纳,获得10
10秒前
10秒前
上官若男应助li采纳,获得10
11秒前
zls发布了新的文献求助10
11秒前
11秒前
谭yuanjun完成签到,获得积分10
17秒前
苏蛋蛋i发布了新的文献求助10
18秒前
萧水白应助ACE采纳,获得10
18秒前
田様应助jiunuan采纳,获得30
19秒前
19秒前
home完成签到,获得积分10
20秒前
25秒前
无私的盼望完成签到 ,获得积分10
26秒前
烂漫的绝悟完成签到 ,获得积分10
27秒前
夏季霸吹发布了新的文献求助10
29秒前
30秒前
大个应助迅速满天采纳,获得10
30秒前
SciGPT应助积极的曼彤采纳,获得10
32秒前
34秒前
35秒前
37秒前
车水完成签到 ,获得积分10
38秒前
陈小黑应助wmq采纳,获得10
40秒前
大个应助Cathy采纳,获得10
41秒前
夏季霸吹完成签到,获得积分20
41秒前
糯米种子完成签到,获得积分0
42秒前
大大苏打实打实完成签到,获得积分10
42秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330222
求助须知:如何正确求助?哪些是违规求助? 2959796
关于积分的说明 8597036
捐赠科研通 2638227
什么是DOI,文献DOI怎么找? 1444215
科研通“疑难数据库(出版商)”最低求助积分说明 669074
邀请新用户注册赠送积分活动 656613