Multi-Scale Perceptual YOLO for Automatic Detection of Clue Cells and Trichomonas in Fluorescence Microscopic Images

人工智能 计算机科学 特征(语言学) 模式识别(心理学) 灵敏度(控制系统) 毛滴虫 卷积神经网络 计算机视觉 滴虫病 假阳性率 过程(计算) 病理 生物 阴道毛滴虫 医学 工程类 微生物学 哲学 语言学 电子工程 操作系统
作者
Xi Chen,Hui-fang Zheng,Haodong Tang,Fan Li
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:: 108500-108500 被引量:1
标识
DOI:10.1016/j.compbiomed.2024.108500
摘要

Vaginitis is a common disease among women and has a high recurrence rate. The primary diagnosis method is fluorescence microscopic inspection, but manual inspection is inefficient and can lead to false detection or missed detection. Automatic cell identification and localization in microscopic images are necessary. For vaginitis diagnosis, clue cells and trichomonas are two important indicators and are difficult to be detected because of the different scales and image characteristics. This study proposes a Multi-Scale Perceptual YOLO (MSP-YOLO) with super-resolution reconstruction branch to meet the detection requirements of clue cells and trichomonas. Based on the scales and image characteristics of clue cells and trichomonas, we employed a super-resolution reconstruction branch to the detection network. This branch guides the detection branch to focus on subtle feature differences. Simultaneously, we proposed an attention-based feature fusion module that is injected with dilated convolutional group. This module makes the network pay attention to the non-centered features of the large target clue cells, which contributes to the enhancement of detection sensitivity. Experimental results show that the proposed detection network MSP-YOLO can improve sensitivity without compromising specificity. For clue cell and trichomoniasis detection, the proposed network achieved sensitivities of 0.706 and 0.910, respectively, which were 0.218 and 0.051 higher than those of the baseline model. In this study, the characteristics of the super-resolution reconstruction task are used to guide the network to effectively extract and process image features. The novel proposed network has an increased sensitivity, which makes it possible to detect vaginitis automatically.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高兴帅哥完成签到,获得积分10
1秒前
3秒前
aslink完成签到,获得积分10
3秒前
Amon完成签到,获得积分10
3秒前
啊娴仔发布了新的文献求助10
3秒前
camellia发布了新的文献求助10
3秒前
万能图书馆应助狂野觅云采纳,获得10
3秒前
充电宝应助zino采纳,获得10
4秒前
4秒前
小可发布了新的文献求助10
4秒前
英姑应助酷酷的起眸采纳,获得10
5秒前
Blue_Pig发布了新的文献求助10
5秒前
科研小白完成签到,获得积分10
6秒前
sooya发布了新的文献求助20
7秒前
7秒前
tiddler完成签到,获得积分10
7秒前
科研通AI2S应助滴滴采纳,获得10
7秒前
wgx完成签到,获得积分20
7秒前
8秒前
爱静静应助Keep采纳,获得10
8秒前
8秒前
8秒前
小马甲应助韭菜采纳,获得10
9秒前
MADKAI发布了新的文献求助10
9秒前
机智的白猫完成签到,获得积分10
9秒前
李健的小迷弟应助xxx采纳,获得10
9秒前
杜杜完成签到,获得积分10
9秒前
NexusExplorer应助新的心跳采纳,获得10
10秒前
11秒前
11秒前
11秒前
11秒前
11秒前
JamesPei应助小可采纳,获得10
11秒前
粗暴的醉卉完成签到,获得积分10
11秒前
11秒前
科研通AI5应助stt采纳,获得10
12秒前
sunzhiyu233发布了新的文献求助10
13秒前
13秒前
缓缓地安静关注了科研通微信公众号
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759