Multi-scale perceptual YOLO for automatic detection of clue cells and trichomonas in fluorescence microscopic images

人工智能 计算机科学 特征(语言学) 模式识别(心理学) 灵敏度(控制系统) 毛滴虫 卷积神经网络 计算机视觉 滴虫病 假阳性率 过程(计算) 病理 生物 阴道毛滴虫 医学 工程类 微生物学 哲学 语言学 电子工程 操作系统
作者
Xi Chen,Haoyue Zheng,Haodong Tang,Fan Li
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:175: 108500-108500 被引量:7
标识
DOI:10.1016/j.compbiomed.2024.108500
摘要

Vaginitis is a common disease among women and has a high recurrence rate. The primary diagnosis method is fluorescence microscopic inspection, but manual inspection is inefficient and can lead to false detection or missed detection. Automatic cell identification and localization in microscopic images are necessary. For vaginitis diagnosis, clue cells and trichomonas are two important indicators and are difficult to be detected because of the different scales and image characteristics. This study proposes a Multi-Scale Perceptual YOLO (MSP-YOLO) with super-resolution reconstruction branch to meet the detection requirements of clue cells and trichomonas. Based on the scales and image characteristics of clue cells and trichomonas, we employed a super-resolution reconstruction branch to the detection network. This branch guides the detection branch to focus on subtle feature differences. Simultaneously, we proposed an attention-based feature fusion module that is injected with dilated convolutional group. This module makes the network pay attention to the non-centered features of the large target clue cells, which contributes to the enhancement of detection sensitivity. Experimental results show that the proposed detection network MSP-YOLO can improve sensitivity without compromising specificity. For clue cell and trichomoniasis detection, the proposed network achieved sensitivities of 0.706 and 0.910, respectively, which were 0.218 and 0.051 higher than those of the baseline model. In this study, the characteristics of the super-resolution reconstruction task are used to guide the network to effectively extract and process image features. The novel proposed network has an increased sensitivity, which makes it possible to detect vaginitis automatically.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张岱帅z完成签到,获得积分10
刚刚
x笑一完成签到,获得积分10
刚刚
友好的惋清完成签到 ,获得积分10
刚刚
缓慢笑珊完成签到,获得积分10
1秒前
Dalia完成签到,获得积分10
1秒前
丘比特应助约克宁采纳,获得10
3秒前
皮皮蛙完成签到,获得积分10
3秒前
小甜发布了新的文献求助10
3秒前
keke完成签到,获得积分10
4秒前
4秒前
4秒前
白茶清酒完成签到,获得积分10
4秒前
Hello应助不会取名啊采纳,获得80
4秒前
大模型应助亮星采纳,获得10
5秒前
QQ完成签到,获得积分10
5秒前
yi0完成签到,获得积分10
5秒前
chenjun7080完成签到,获得积分10
5秒前
6秒前
青蛙十字绣00700完成签到,获得积分10
6秒前
优美季节完成签到 ,获得积分10
6秒前
机器猫nzy完成签到,获得积分10
7秒前
萤火虫完成签到,获得积分10
7秒前
勤奋雨完成签到,获得积分10
7秒前
7秒前
李爱国应助琉璃岁月采纳,获得10
7秒前
mss12138完成签到,获得积分0
8秒前
yu完成签到 ,获得积分10
8秒前
无限达完成签到,获得积分10
8秒前
纵马长歌完成签到,获得积分10
8秒前
8秒前
Serena完成签到,获得积分20
9秒前
zhao完成签到,获得积分10
9秒前
陈琳完成签到,获得积分10
10秒前
Colin_chen完成签到,获得积分10
10秒前
之以发布了新的文献求助10
11秒前
洋山芋完成签到,获得积分10
11秒前
ferritin完成签到 ,获得积分10
11秒前
haoyunlai完成签到,获得积分10
11秒前
彩虹天堂完成签到,获得积分10
11秒前
decademe完成签到,获得积分10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950088
求助须知:如何正确求助?哪些是违规求助? 3495545
关于积分的说明 11077625
捐赠科研通 3226040
什么是DOI,文献DOI怎么找? 1783457
邀请新用户注册赠送积分活动 867687
科研通“疑难数据库(出版商)”最低求助积分说明 800874