Multi-scale perceptual YOLO for automatic detection of clue cells and trichomonas in fluorescence microscopic images

人工智能 计算机科学 特征(语言学) 模式识别(心理学) 灵敏度(控制系统) 毛滴虫 卷积神经网络 计算机视觉 滴虫病 假阳性率 过程(计算) 病理 生物 阴道毛滴虫 医学 工程类 哲学 操作系统 微生物学 语言学 电子工程
作者
Xi Chen,Haoyue Zheng,Haodong Tang,Fan Li
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:175: 108500-108500 被引量:7
标识
DOI:10.1016/j.compbiomed.2024.108500
摘要

Vaginitis is a common disease among women and has a high recurrence rate. The primary diagnosis method is fluorescence microscopic inspection, but manual inspection is inefficient and can lead to false detection or missed detection. Automatic cell identification and localization in microscopic images are necessary. For vaginitis diagnosis, clue cells and trichomonas are two important indicators and are difficult to be detected because of the different scales and image characteristics. This study proposes a Multi-Scale Perceptual YOLO (MSP-YOLO) with super-resolution reconstruction branch to meet the detection requirements of clue cells and trichomonas. Based on the scales and image characteristics of clue cells and trichomonas, we employed a super-resolution reconstruction branch to the detection network. This branch guides the detection branch to focus on subtle feature differences. Simultaneously, we proposed an attention-based feature fusion module that is injected with dilated convolutional group. This module makes the network pay attention to the non-centered features of the large target clue cells, which contributes to the enhancement of detection sensitivity. Experimental results show that the proposed detection network MSP-YOLO can improve sensitivity without compromising specificity. For clue cell and trichomoniasis detection, the proposed network achieved sensitivities of 0.706 and 0.910, respectively, which were 0.218 and 0.051 higher than those of the baseline model. In this study, the characteristics of the super-resolution reconstruction task are used to guide the network to effectively extract and process image features. The novel proposed network has an increased sensitivity, which makes it possible to detect vaginitis automatically.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
银河发布了新的文献求助10
刚刚
Owen应助健康的果汁采纳,获得10
刚刚
小蘑菇应助酥皮喵喵饼采纳,获得20
刚刚
刚刚
CipherSage应助合适冰棍采纳,获得10
刚刚
是阿龙呀完成签到,获得积分10
1秒前
2秒前
复杂如音完成签到,获得积分10
2秒前
yip发布了新的文献求助10
4秒前
5秒前
5秒前
huco发布了新的文献求助10
6秒前
7秒前
归尘发布了新的文献求助10
7秒前
young发布了新的文献求助10
7秒前
lsz发布了新的文献求助10
8秒前
浮游应助冬亦采纳,获得10
8秒前
蓝星完成签到,获得积分10
10秒前
feng发布了新的文献求助10
11秒前
飘苒发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
12秒前
开朗紫发布了新的文献求助10
13秒前
14秒前
何洋完成签到 ,获得积分10
15秒前
15秒前
16秒前
mnc发布了新的文献求助10
16秒前
零零壹发布了新的文献求助10
17秒前
17秒前
开坦克的贝塔完成签到,获得积分10
17秒前
脑洞疼应助sheishei采纳,获得10
20秒前
20秒前
xyrt发布了新的文献求助10
21秒前
xxx发布了新的文献求助10
21秒前
21秒前
小杭76应助大道酬勤采纳,获得10
23秒前
彭三爷关注了科研通微信公众号
23秒前
合适冰棍发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424903
求助须知:如何正确求助?哪些是违规求助? 4539135
关于积分的说明 14165791
捐赠科研通 4456231
什么是DOI,文献DOI怎么找? 2444084
邀请新用户注册赠送积分活动 1435140
关于科研通互助平台的介绍 1412492