Multi-Scale Perceptual YOLO for Automatic Detection of Clue Cells and Trichomonas in Fluorescence Microscopic Images

人工智能 计算机科学 特征(语言学) 模式识别(心理学) 灵敏度(控制系统) 毛滴虫 卷积神经网络 计算机视觉 滴虫病 假阳性率 过程(计算) 病理 生物 阴道毛滴虫 医学 工程类 微生物学 哲学 语言学 电子工程 操作系统
作者
Xi Chen,Hui-fang Zheng,Haodong Tang,Fan Li
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:: 108500-108500 被引量:1
标识
DOI:10.1016/j.compbiomed.2024.108500
摘要

Vaginitis is a common disease among women and has a high recurrence rate. The primary diagnosis method is fluorescence microscopic inspection, but manual inspection is inefficient and can lead to false detection or missed detection. Automatic cell identification and localization in microscopic images are necessary. For vaginitis diagnosis, clue cells and trichomonas are two important indicators and are difficult to be detected because of the different scales and image characteristics. This study proposes a Multi-Scale Perceptual YOLO (MSP-YOLO) with super-resolution reconstruction branch to meet the detection requirements of clue cells and trichomonas. Based on the scales and image characteristics of clue cells and trichomonas, we employed a super-resolution reconstruction branch to the detection network. This branch guides the detection branch to focus on subtle feature differences. Simultaneously, we proposed an attention-based feature fusion module that is injected with dilated convolutional group. This module makes the network pay attention to the non-centered features of the large target clue cells, which contributes to the enhancement of detection sensitivity. Experimental results show that the proposed detection network MSP-YOLO can improve sensitivity without compromising specificity. For clue cell and trichomoniasis detection, the proposed network achieved sensitivities of 0.706 and 0.910, respectively, which were 0.218 and 0.051 higher than those of the baseline model. In this study, the characteristics of the super-resolution reconstruction task are used to guide the network to effectively extract and process image features. The novel proposed network has an increased sensitivity, which makes it possible to detect vaginitis automatically.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shanshanshan发布了新的文献求助10
1秒前
always完成签到 ,获得积分10
1秒前
听星伴月完成签到,获得积分10
1秒前
damiao发布了新的文献求助10
2秒前
小Q啊啾发布了新的文献求助10
3秒前
4秒前
hehe完成签到,获得积分20
4秒前
MADKAI发布了新的文献求助10
4秒前
wxj完成签到,获得积分10
5秒前
5秒前
dm完成签到,获得积分10
6秒前
6秒前
自挂东南枝完成签到,获得积分10
6秒前
7秒前
学者完成签到,获得积分10
7秒前
ES发布了新的文献求助10
8秒前
qiuxue完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
高贵熊猫发布了新的文献求助10
10秒前
江南完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
wxj发布了新的文献求助10
12秒前
洁净行云发布了新的文献求助10
12秒前
ttracc完成签到 ,获得积分10
13秒前
世界发布了新的文献求助10
13秒前
Ivan完成签到,获得积分10
13秒前
Lawliet发布了新的文献求助10
14秒前
第五个完全数完成签到,获得积分10
14秒前
丽虹发布了新的文献求助10
14秒前
14秒前
科研通AI2S应助小Q啊啾采纳,获得10
15秒前
damiao完成签到,获得积分10
15秒前
15秒前
cx完成签到,获得积分20
15秒前
谢佳冀完成签到,获得积分10
16秒前
烈阳完成签到,获得积分10
17秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160609
求助须知:如何正确求助?哪些是违规求助? 2811828
关于积分的说明 7893452
捐赠科研通 2470647
什么是DOI,文献DOI怎么找? 1315718
科研通“疑难数据库(出版商)”最低求助积分说明 630929
版权声明 602052