Bayesian hypernetwork collaborates with time-difference evolutional network for temporal knowledge prediction

计算机科学 关系(数据库) 嵌入 时间戳 贝叶斯网络 人工智能 贝叶斯概率 机器学习 理论计算机科学 数据挖掘 计算机安全
作者
Pengpeng Shao,Jianhua Tao,Dawei Zhang
出处
期刊:Neural Networks [Elsevier]
卷期号:: 106146-106146 被引量:2
标识
DOI:10.1016/j.neunet.2024.106146
摘要

A Temporal Knowledge Graph (TKG) is a sequence of Knowledge Graphs (KGs) attached with time information, in which each KG contains the facts that co-occur at the same timestamp. Temporal knowledge prediction (TKP) aims to predict future events given observed historical KGs in TKGs, which is essential for many applications to provide intelligent analysis services. However, most existing TKP methods focus on entity and relation prediction tasks but ignore the importance of time prediction tasks. Furthermore, there is uncertainty in time prediction, and it is difficult for prediction models to model it completely. In this work, we propose a collaboration framework with Bayesian Hypernetwork and Time-Difference Evolutional Network (BH-TDEN) to address these problems. First, we begin with the time prediction task, and we present a Bayesian hypernetwork to model the uncertainty of events time. For the input of Bayesian hypernetwork, we design a novel time-difference evolutional network to obtain the entities and relations embedding. Specifically, we propose an auto-regressive time gate parameterized by the time difference of adjacent KGs in entity and relation encoder to learn the time-sensitive TKG embedding, which not only learns the relationship between the given time information and TKG embedding but also provides more expressive TKG embedding for Bayesian hypernetwork to accurately predict the time of future events. Furthermore, we also present a novel relation updating mechanism that employs the neighbor relations of the subject corresponding to the current relation to learn more adaptive relation embedding. Extensive experiments demonstrate that the proposed method obtains considerable time prediction and link prediction performance on four TKG benchmark datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
自由滑大王完成签到 ,获得积分10
刚刚
1秒前
1秒前
didi发布了新的文献求助10
1秒前
研友_VZG7GZ应助青葱之松采纳,获得10
2秒前
应用完成签到,获得积分20
2秒前
科研通AI6应助fxsg采纳,获得10
2秒前
4秒前
4秒前
4秒前
zhang关注了科研通微信公众号
5秒前
5秒前
虚心的觅松完成签到,获得积分10
5秒前
应用发布了新的文献求助30
6秒前
RockRedfoo发布了新的文献求助10
6秒前
顾矜应助我有一个超能力采纳,获得10
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
7秒前
烂漫的飞松完成签到,获得积分10
7秒前
7秒前
xiaoyuanbao1988完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
张杰发布了新的文献求助10
9秒前
科研通AI2S应助Sky采纳,获得10
9秒前
科研通AI6应助我叫XXXXXXX采纳,获得10
10秒前
斗转星移发布了新的文献求助10
10秒前
早睡完成签到 ,获得积分10
11秒前
敏哇哇哇发布了新的文献求助10
11秒前
vv发布了新的文献求助10
11秒前
小苏发布了新的文献求助10
12秒前
小王发布了新的文献求助10
12秒前
Derun发布了新的文献求助10
12秒前
Hello应助看文献了采纳,获得10
13秒前
liherong完成签到,获得积分10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649011
求助须知:如何正确求助?哪些是违规求助? 4777097
关于积分的说明 15046363
捐赠科研通 4807843
什么是DOI,文献DOI怎么找? 2571160
邀请新用户注册赠送积分活动 1527756
关于科研通互助平台的介绍 1486683