Bayesian hypernetwork collaborates with time-difference evolutional network for temporal knowledge prediction

计算机科学 关系(数据库) 嵌入 时间戳 贝叶斯网络 人工智能 贝叶斯概率 机器学习 理论计算机科学 数据挖掘 计算机安全
作者
Pengpeng Shao,Jianhua Tao,Dawei Zhang
出处
期刊:Neural Networks [Elsevier BV]
卷期号:: 106146-106146 被引量:2
标识
DOI:10.1016/j.neunet.2024.106146
摘要

A Temporal Knowledge Graph (TKG) is a sequence of Knowledge Graphs (KGs) attached with time information, in which each KG contains the facts that co-occur at the same timestamp. Temporal knowledge prediction (TKP) aims to predict future events given observed historical KGs in TKGs, which is essential for many applications to provide intelligent analysis services. However, most existing TKP methods focus on entity and relation prediction tasks but ignore the importance of time prediction tasks. Furthermore, there is uncertainty in time prediction, and it is difficult for prediction models to model it completely. In this work, we propose a collaboration framework with Bayesian Hypernetwork and Time-Difference Evolutional Network (BH-TDEN) to address these problems. First, we begin with the time prediction task, and we present a Bayesian hypernetwork to model the uncertainty of events time. For the input of Bayesian hypernetwork, we design a novel time-difference evolutional network to obtain the entities and relations embedding. Specifically, we propose an auto-regressive time gate parameterized by the time difference of adjacent KGs in entity and relation encoder to learn the time-sensitive TKG embedding, which not only learns the relationship between the given time information and TKG embedding but also provides more expressive TKG embedding for Bayesian hypernetwork to accurately predict the time of future events. Furthermore, we also present a novel relation updating mechanism that employs the neighbor relations of the subject corresponding to the current relation to learn more adaptive relation embedding. Extensive experiments demonstrate that the proposed method obtains considerable time prediction and link prediction performance on four TKG benchmark datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助Hellowa采纳,获得10
刚刚
viola完成签到 ,获得积分10
刚刚
刚刚
1秒前
xymy发布了新的文献求助10
3秒前
包容的尔冬完成签到,获得积分10
5秒前
viola关注了科研通微信公众号
5秒前
6秒前
6秒前
汉堡包应助望舒采纳,获得10
8秒前
蓝刺完成签到,获得积分10
8秒前
仲滋滋完成签到,获得积分20
9秒前
zehua309发布了新的文献求助10
10秒前
小二郎应助枫原万叶采纳,获得10
11秒前
11秒前
11秒前
大个应助娜乌西卡采纳,获得10
12秒前
12秒前
顺心醉蝶完成签到 ,获得积分10
12秒前
12秒前
诚心洙完成签到,获得积分20
13秒前
15秒前
苹果冬莲完成签到,获得积分10
15秒前
啦啦啦发布了新的文献求助20
15秒前
15秒前
17秒前
17秒前
天天天晴完成签到,获得积分10
18秒前
万历完成签到,获得积分10
18秒前
SONGYEZI应助upup小李采纳,获得20
18秒前
18秒前
yy完成签到,获得积分10
20秒前
21秒前
zxx完成签到,获得积分10
21秒前
UniTTEC9560完成签到,获得积分10
22秒前
HaHa发布了新的文献求助10
22秒前
22秒前
晴云发布了新的文献求助10
23秒前
小熊猫完成签到 ,获得积分10
23秒前
可爱的函函应助晴烟ZYM采纳,获得30
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992495
求助须知:如何正确求助?哪些是违规求助? 3533431
关于积分的说明 11262369
捐赠科研通 3273025
什么是DOI,文献DOI怎么找? 1805895
邀请新用户注册赠送积分活动 882800
科研通“疑难数据库(出版商)”最低求助积分说明 809496