亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Bayesian hypernetwork collaborates with time-difference evolutional network for temporal knowledge prediction

计算机科学 关系(数据库) 嵌入 时间戳 贝叶斯网络 人工智能 贝叶斯概率 机器学习 理论计算机科学 数据挖掘 计算机安全
作者
Pengpeng Shao,Jianhua Tao,Dawei Zhang
出处
期刊:Neural Networks [Elsevier]
卷期号:: 106146-106146 被引量:2
标识
DOI:10.1016/j.neunet.2024.106146
摘要

A Temporal Knowledge Graph (TKG) is a sequence of Knowledge Graphs (KGs) attached with time information, in which each KG contains the facts that co-occur at the same timestamp. Temporal knowledge prediction (TKP) aims to predict future events given observed historical KGs in TKGs, which is essential for many applications to provide intelligent analysis services. However, most existing TKP methods focus on entity and relation prediction tasks but ignore the importance of time prediction tasks. Furthermore, there is uncertainty in time prediction, and it is difficult for prediction models to model it completely. In this work, we propose a collaboration framework with Bayesian Hypernetwork and Time-Difference Evolutional Network (BH-TDEN) to address these problems. First, we begin with the time prediction task, and we present a Bayesian hypernetwork to model the uncertainty of events time. For the input of Bayesian hypernetwork, we design a novel time-difference evolutional network to obtain the entities and relations embedding. Specifically, we propose an auto-regressive time gate parameterized by the time difference of adjacent KGs in entity and relation encoder to learn the time-sensitive TKG embedding, which not only learns the relationship between the given time information and TKG embedding but also provides more expressive TKG embedding for Bayesian hypernetwork to accurately predict the time of future events. Furthermore, we also present a novel relation updating mechanism that employs the neighbor relations of the subject corresponding to the current relation to learn more adaptive relation embedding. Extensive experiments demonstrate that the proposed method obtains considerable time prediction and link prediction performance on four TKG benchmark datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谨慎鸽子完成签到 ,获得积分10
3秒前
万能图书馆应助komorebi采纳,获得10
4秒前
4秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
Chris发布了新的文献求助10
8秒前
无极微光应助科研通管家采纳,获得20
8秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
无极微光应助科研通管家采纳,获得20
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
雨rain完成签到 ,获得积分10
13秒前
Ashore完成签到 ,获得积分10
16秒前
Leejuice完成签到,获得积分10
19秒前
28秒前
完美世界应助小鱼采纳,获得10
29秒前
Aaa_12012完成签到,获得积分10
29秒前
32秒前
Aaa_12012发布了新的文献求助30
33秒前
33秒前
34秒前
36秒前
zzmm发布了新的文献求助10
37秒前
37秒前
38秒前
39秒前
42秒前
谨慎的夏发布了新的文献求助10
44秒前
Jiang 小白完成签到,获得积分10
47秒前
48秒前
小鱼发布了新的文献求助10
48秒前
50秒前
无私的鲂发布了新的文献求助10
54秒前
111完成签到 ,获得积分10
55秒前
力劈华山完成签到,获得积分10
57秒前
1分钟前
1分钟前
安静的青曼完成签到,获得积分10
1分钟前
1分钟前
Owen应助一路前行采纳,获得10
1分钟前
不羁之魂发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779942
求助须知:如何正确求助?哪些是违规求助? 5650975
关于积分的说明 15452581
捐赠科研通 4910875
什么是DOI,文献DOI怎么找? 2643040
邀请新用户注册赠送积分活动 1590694
关于科研通互助平台的介绍 1545122