Bayesian hypernetwork collaborates with time-difference evolutional network for temporal knowledge prediction

计算机科学 关系(数据库) 嵌入 时间戳 贝叶斯网络 人工智能 贝叶斯概率 机器学习 理论计算机科学 数据挖掘 计算机安全
作者
Pengpeng Shao,Jianhua Tao,Dawei Zhang
出处
期刊:Neural Networks [Elsevier]
卷期号:: 106146-106146 被引量:2
标识
DOI:10.1016/j.neunet.2024.106146
摘要

A Temporal Knowledge Graph (TKG) is a sequence of Knowledge Graphs (KGs) attached with time information, in which each KG contains the facts that co-occur at the same timestamp. Temporal knowledge prediction (TKP) aims to predict future events given observed historical KGs in TKGs, which is essential for many applications to provide intelligent analysis services. However, most existing TKP methods focus on entity and relation prediction tasks but ignore the importance of time prediction tasks. Furthermore, there is uncertainty in time prediction, and it is difficult for prediction models to model it completely. In this work, we propose a collaboration framework with Bayesian Hypernetwork and Time-Difference Evolutional Network (BH-TDEN) to address these problems. First, we begin with the time prediction task, and we present a Bayesian hypernetwork to model the uncertainty of events time. For the input of Bayesian hypernetwork, we design a novel time-difference evolutional network to obtain the entities and relations embedding. Specifically, we propose an auto-regressive time gate parameterized by the time difference of adjacent KGs in entity and relation encoder to learn the time-sensitive TKG embedding, which not only learns the relationship between the given time information and TKG embedding but also provides more expressive TKG embedding for Bayesian hypernetwork to accurately predict the time of future events. Furthermore, we also present a novel relation updating mechanism that employs the neighbor relations of the subject corresponding to the current relation to learn more adaptive relation embedding. Extensive experiments demonstrate that the proposed method obtains considerable time prediction and link prediction performance on four TKG benchmark datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lamer完成签到,获得积分10
1秒前
11发布了新的文献求助10
1秒前
2秒前
2秒前
威武猫咪发布了新的文献求助20
3秒前
wlscj应助277采纳,获得20
3秒前
如意小丸子完成签到,获得积分10
4秒前
研友_VZG7GZ应助wangzd采纳,获得10
4秒前
shinnosuke应助liang2508采纳,获得10
5秒前
xql完成签到,获得积分10
6秒前
uzumay发布了新的文献求助100
6秒前
666发布了新的文献求助10
7秒前
蛋堡发布了新的文献求助10
7秒前
寒冷苑睐发布了新的文献求助10
7秒前
song完成签到 ,获得积分10
7秒前
白汐发布了新的文献求助10
8秒前
专注绝义完成签到,获得积分20
8秒前
8秒前
11完成签到,获得积分10
8秒前
9秒前
yuyukeke完成签到,获得积分10
9秒前
王大可完成签到 ,获得积分10
9秒前
9秒前
啊哈哈哈哈完成签到,获得积分10
9秒前
yuyu完成签到,获得积分10
10秒前
summertrain完成签到 ,获得积分20
11秒前
12秒前
Rainsky完成签到 ,获得积分10
13秒前
qawsed发布了新的文献求助10
13秒前
Stella应助xiezhenghong采纳,获得30
14秒前
李爱国应助小米采纳,获得10
15秒前
15秒前
大风起兮发布了新的文献求助10
16秒前
18秒前
Sunny完成签到,获得积分10
18秒前
烟雨行舟发布了新的文献求助10
18秒前
风中乐曲完成签到,获得积分10
19秒前
20秒前
hyjhhy完成签到,获得积分10
22秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5350613
求助须知:如何正确求助?哪些是违规求助? 4483988
关于积分的说明 13957602
捐赠科研通 4383396
什么是DOI,文献DOI怎么找? 2408306
邀请新用户注册赠送积分活动 1400952
关于科研通互助平台的介绍 1374365