Bayesian hypernetwork collaborates with time-difference evolutional network for temporal knowledge prediction

计算机科学 关系(数据库) 嵌入 时间戳 贝叶斯网络 人工智能 贝叶斯概率 机器学习 理论计算机科学 数据挖掘 计算机安全
作者
Pengpeng Shao,Jianhua Tao,Dawei Zhang
出处
期刊:Neural Networks [Elsevier]
卷期号:: 106146-106146 被引量:2
标识
DOI:10.1016/j.neunet.2024.106146
摘要

A Temporal Knowledge Graph (TKG) is a sequence of Knowledge Graphs (KGs) attached with time information, in which each KG contains the facts that co-occur at the same timestamp. Temporal knowledge prediction (TKP) aims to predict future events given observed historical KGs in TKGs, which is essential for many applications to provide intelligent analysis services. However, most existing TKP methods focus on entity and relation prediction tasks but ignore the importance of time prediction tasks. Furthermore, there is uncertainty in time prediction, and it is difficult for prediction models to model it completely. In this work, we propose a collaboration framework with Bayesian Hypernetwork and Time-Difference Evolutional Network (BH-TDEN) to address these problems. First, we begin with the time prediction task, and we present a Bayesian hypernetwork to model the uncertainty of events time. For the input of Bayesian hypernetwork, we design a novel time-difference evolutional network to obtain the entities and relations embedding. Specifically, we propose an auto-regressive time gate parameterized by the time difference of adjacent KGs in entity and relation encoder to learn the time-sensitive TKG embedding, which not only learns the relationship between the given time information and TKG embedding but also provides more expressive TKG embedding for Bayesian hypernetwork to accurately predict the time of future events. Furthermore, we also present a novel relation updating mechanism that employs the neighbor relations of the subject corresponding to the current relation to learn more adaptive relation embedding. Extensive experiments demonstrate that the proposed method obtains considerable time prediction and link prediction performance on four TKG benchmark datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
happy完成签到,获得积分10
刚刚
刚刚
脑洞疼应助专一的摩托车采纳,获得10
刚刚
彭于晏应助芯止谭轩采纳,获得10
1秒前
小白完成签到,获得积分10
2秒前
2秒前
yuyukeke发布了新的文献求助10
2秒前
Rivers发布了新的文献求助30
3秒前
Dimple完成签到,获得积分10
3秒前
学术骗子小刚完成签到,获得积分0
4秒前
动听梨愁发布了新的文献求助10
5秒前
5秒前
科研通AI2S应助陌上之心采纳,获得10
5秒前
科研通AI6应助绒裤病毒采纳,获得10
6秒前
6秒前
小屋完成签到,获得积分10
8秒前
赘婿应助虚幻百川采纳,获得10
8秒前
丽丽完成签到,获得积分20
9秒前
9秒前
所所应助慈祥的鑫采纳,获得10
9秒前
10秒前
dengdengdeng完成签到 ,获得积分10
10秒前
LKT发布了新的文献求助10
10秒前
清秀向雁发布了新的文献求助10
10秒前
10秒前
11秒前
13秒前
huhdcid发布了新的文献求助200
14秒前
hyscoll发布了新的文献求助10
14秒前
小马甲应助联润翔采纳,获得10
15秒前
LKT完成签到,获得积分10
15秒前
16秒前
syh发布了新的文献求助10
16秒前
万能图书馆应助yuyukeke采纳,获得10
16秒前
和光同尘完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
东郭一斩完成签到,获得积分10
18秒前
李健的小迷弟应助ydfqlzj采纳,获得20
19秒前
koui完成签到 ,获得积分10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5530913
求助须知:如何正确求助?哪些是违规求助? 4619898
关于积分的说明 14570675
捐赠科研通 4559413
什么是DOI,文献DOI怎么找? 2498391
邀请新用户注册赠送积分活动 1478380
关于科研通互助平台的介绍 1449913