Bayesian hypernetwork collaborates with time-difference evolutional network for temporal knowledge prediction

计算机科学 关系(数据库) 嵌入 时间戳 贝叶斯网络 人工智能 贝叶斯概率 机器学习 理论计算机科学 数据挖掘 计算机安全
作者
Pengpeng Shao,Jianhua Tao,Dawei Zhang
出处
期刊:Neural Networks [Elsevier]
卷期号:: 106146-106146 被引量:2
标识
DOI:10.1016/j.neunet.2024.106146
摘要

A Temporal Knowledge Graph (TKG) is a sequence of Knowledge Graphs (KGs) attached with time information, in which each KG contains the facts that co-occur at the same timestamp. Temporal knowledge prediction (TKP) aims to predict future events given observed historical KGs in TKGs, which is essential for many applications to provide intelligent analysis services. However, most existing TKP methods focus on entity and relation prediction tasks but ignore the importance of time prediction tasks. Furthermore, there is uncertainty in time prediction, and it is difficult for prediction models to model it completely. In this work, we propose a collaboration framework with Bayesian Hypernetwork and Time-Difference Evolutional Network (BH-TDEN) to address these problems. First, we begin with the time prediction task, and we present a Bayesian hypernetwork to model the uncertainty of events time. For the input of Bayesian hypernetwork, we design a novel time-difference evolutional network to obtain the entities and relations embedding. Specifically, we propose an auto-regressive time gate parameterized by the time difference of adjacent KGs in entity and relation encoder to learn the time-sensitive TKG embedding, which not only learns the relationship between the given time information and TKG embedding but also provides more expressive TKG embedding for Bayesian hypernetwork to accurately predict the time of future events. Furthermore, we also present a novel relation updating mechanism that employs the neighbor relations of the subject corresponding to the current relation to learn more adaptive relation embedding. Extensive experiments demonstrate that the proposed method obtains considerable time prediction and link prediction performance on four TKG benchmark datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胡振宁发布了新的文献求助10
刚刚
haorui完成签到,获得积分10
刚刚
Hurob完成签到,获得积分10
刚刚
搜集达人应助明理战斗机采纳,获得10
刚刚
TristanGuan发布了新的文献求助10
1秒前
1秒前
在水一方应助犹豫灯泡采纳,获得10
1秒前
1秒前
Sakura应助futing采纳,获得10
2秒前
时遇完成签到,获得积分10
2秒前
严金鱼完成签到 ,获得积分10
2秒前
3秒前
3秒前
3秒前
3秒前
学渣完成签到,获得积分10
3秒前
Smiling完成签到,获得积分10
3秒前
wshwx完成签到,获得积分10
4秒前
4秒前
哈哈哈哈完成签到 ,获得积分10
4秒前
李国华完成签到,获得积分10
4秒前
Mic完成签到,获得积分0
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
无情的宛菡完成签到 ,获得积分10
6秒前
zxk发布了新的文献求助10
6秒前
科目三应助贝妮采纳,获得10
6秒前
远山完成签到,获得积分10
6秒前
科研通AI6应助苗条的静白采纳,获得200
7秒前
Yeee完成签到,获得积分10
7秒前
圆锥香蕉应助Hurob采纳,获得20
7秒前
hydrazine发布了新的文献求助10
8秒前
8秒前
科研通AI6应助aifd采纳,获得10
8秒前
科研通AI6应助科研狗采纳,获得10
8秒前
8秒前
蕾子完成签到,获得积分10
8秒前
8秒前
小苏哥哥发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5433563
求助须知:如何正确求助?哪些是违规求助? 4545956
关于积分的说明 14199843
捐赠科研通 4465748
什么是DOI,文献DOI怎么找? 2447658
邀请新用户注册赠送积分活动 1438788
关于科研通互助平台的介绍 1415767