已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Bayesian hypernetwork collaborates with time-difference evolutional network for temporal knowledge prediction

计算机科学 关系(数据库) 嵌入 时间戳 贝叶斯网络 人工智能 贝叶斯概率 机器学习 理论计算机科学 数据挖掘 计算机安全
作者
Pengpeng Shao,Jianhua Tao,Dawei Zhang
出处
期刊:Neural Networks [Elsevier]
卷期号:: 106146-106146 被引量:2
标识
DOI:10.1016/j.neunet.2024.106146
摘要

A Temporal Knowledge Graph (TKG) is a sequence of Knowledge Graphs (KGs) attached with time information, in which each KG contains the facts that co-occur at the same timestamp. Temporal knowledge prediction (TKP) aims to predict future events given observed historical KGs in TKGs, which is essential for many applications to provide intelligent analysis services. However, most existing TKP methods focus on entity and relation prediction tasks but ignore the importance of time prediction tasks. Furthermore, there is uncertainty in time prediction, and it is difficult for prediction models to model it completely. In this work, we propose a collaboration framework with Bayesian Hypernetwork and Time-Difference Evolutional Network (BH-TDEN) to address these problems. First, we begin with the time prediction task, and we present a Bayesian hypernetwork to model the uncertainty of events time. For the input of Bayesian hypernetwork, we design a novel time-difference evolutional network to obtain the entities and relations embedding. Specifically, we propose an auto-regressive time gate parameterized by the time difference of adjacent KGs in entity and relation encoder to learn the time-sensitive TKG embedding, which not only learns the relationship between the given time information and TKG embedding but also provides more expressive TKG embedding for Bayesian hypernetwork to accurately predict the time of future events. Furthermore, we also present a novel relation updating mechanism that employs the neighbor relations of the subject corresponding to the current relation to learn more adaptive relation embedding. Extensive experiments demonstrate that the proposed method obtains considerable time prediction and link prediction performance on four TKG benchmark datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
sisi完成签到,获得积分20
5秒前
光亮白山完成签到 ,获得积分10
5秒前
斯文败类应助粥粥采纳,获得30
9秒前
科研通AI6应助aaaaaYue采纳,获得10
9秒前
夜话风陵杜完成签到 ,获得积分0
11秒前
捉迷藏完成签到,获得积分0
11秒前
14秒前
要减肥的数据线完成签到,获得积分10
15秒前
15秒前
15秒前
16秒前
花花菌发布了新的文献求助10
17秒前
20秒前
Charley发布了新的文献求助10
20秒前
20秒前
小湛完成签到 ,获得积分10
23秒前
YBR完成签到 ,获得积分10
26秒前
28秒前
甜甜圈完成签到 ,获得积分10
29秒前
30秒前
酷波er应助KK采纳,获得10
32秒前
可爱彩虹发布了新的文献求助10
33秒前
丢丢银发布了新的文献求助10
35秒前
Luna爱科研完成签到 ,获得积分10
35秒前
hersheys完成签到,获得积分10
36秒前
馒头发布了新的文献求助10
37秒前
科研通AI2S应助科研通管家采纳,获得10
38秒前
mashibeo应助科研通管家采纳,获得10
38秒前
mashibeo应助科研通管家采纳,获得10
38秒前
今后应助科研通管家采纳,获得10
38秒前
38秒前
桐桐应助科研通管家采纳,获得10
38秒前
科研通AI6应助科研通管家采纳,获得10
38秒前
科研通AI2S应助科研通管家采纳,获得10
38秒前
科研通AI6应助科研通管家采纳,获得10
38秒前
38秒前
38秒前
shizi发布了新的文献求助10
39秒前
40秒前
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5497998
求助须知:如何正确求助?哪些是违规求助? 4595406
关于积分的说明 14448939
捐赠科研通 4528042
什么是DOI,文献DOI怎么找? 2481329
邀请新用户注册赠送积分活动 1465549
关于科研通互助平台的介绍 1438252