亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

AsymMirai: Interpretable Mammography-based Deep Learning Model for 1–5-year Breast Cancer Risk Prediction

医学 乳腺摄影术 接收机工作特性 乳腺癌 深度学习 机器学习 人工智能 癌症 内科学 计算机科学
作者
Jon Donnelly,Luke Moffett,Alina Jade Barnett,Hari Trivedi,Fides R. Schwartz,Joseph Y. Lo,Cynthia Rudin
出处
期刊:Radiology [Radiological Society of North America]
卷期号:310 (3) 被引量:11
标识
DOI:10.1148/radiol.232780
摘要

Background Mirai, a state-of-the-art deep learning–based algorithm for predicting short-term breast cancer risk, outperforms standard clinical risk models. However, Mirai is a black box, risking overreliance on the algorithm and incorrect diagnoses. Purpose To identify whether bilateral dissimilarity underpins Mirai's reasoning process; create a simplified, intelligible model, AsymMirai, using bilateral dissimilarity; and determine if AsymMirai may approximate Mirai's performance in 1–5-year breast cancer risk prediction. Materials and Methods This retrospective study involved mammograms obtained from patients in the EMory BrEast imaging Dataset, known as EMBED, from January 2013 to December 2020. To approximate 1–5-year breast cancer risk predictions from Mirai, another deep learning–based model, AsymMirai, was built with an interpretable module: local bilateral dissimilarity (localized differences between left and right breast tissue). Pearson correlation coefficients were computed between the risk scores of Mirai and those of AsymMirai. Subgroup analysis was performed in patients for whom AsymMirai's year-over-year reasoning was consistent. AsymMirai and Mirai risk scores were compared using the area under the receiver operating characteristic curve (AUC), and 95% CIs were calculated using the DeLong method. Results Screening mammograms (n = 210 067) from 81 824 patients (mean age, 59.4 years ± 11.4 [SD]) were included in the study. Deep learning–extracted bilateral dissimilarity produced similar risk scores to those of Mirai (1-year risk prediction, r = 0.6832; 4–5-year prediction, r = 0.6988) and achieved similar performance as Mirai. For AsymMirai, the 1-year breast cancer risk AUC was 0.79 (95% CI: 0.73, 0.85) (Mirai, 0.84; 95% CI: 0.79, 0.89; P = .002), and the 5-year risk AUC was 0.66 (95% CI: 0.63, 0.69) (Mirai, 0.71; 95% CI: 0.68, 0.74; P < .001). In a subgroup of 183 patients for whom AsymMirai repeatedly highlighted the same tissue over time, AsymMirai achieved a 3-year AUC of 0.92 (95% CI: 0.86, 0.97). Conclusion Localized bilateral dissimilarity, an imaging marker for breast cancer risk, approximated the predictive power of Mirai and was a key to Mirai's reasoning. © RSNA, 2024 Supplemental material is available for this article See also the editorial by Freitas in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
13秒前
Jacky发布了新的文献求助10
19秒前
23秒前
yznfly应助Lee2000采纳,获得30
25秒前
30秒前
量子星尘发布了新的文献求助10
37秒前
53秒前
Hello应助科研通管家采纳,获得20
58秒前
田様应助科研通管家采纳,获得10
58秒前
Lee2000完成签到,获得积分10
1分钟前
Jacky完成签到,获得积分10
1分钟前
1分钟前
狂野的水杯完成签到,获得积分10
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
云是完成签到 ,获得积分10
2分钟前
2分钟前
little佳完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
tang发布了新的文献求助10
2分钟前
脑洞疼应助枝江泥头车采纳,获得10
3分钟前
tang完成签到,获得积分10
3分钟前
3分钟前
tutu完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
judy007发布了新的文献求助10
3分钟前
JamesPei应助枝江泥头车采纳,获得10
3分钟前
3分钟前
枝江泥头车完成签到,获得积分10
4分钟前
h0jian09完成签到,获得积分10
4分钟前
4分钟前
梨子茶完成签到,获得积分10
4分钟前
含蓄夏瑶发布了新的文献求助30
5分钟前
5分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957044
求助须知:如何正确求助?哪些是违规求助? 3503084
关于积分的说明 11111240
捐赠科研通 3234118
什么是DOI,文献DOI怎么找? 1787735
邀请新用户注册赠送积分活动 870762
科研通“疑难数据库(出版商)”最低求助积分说明 802264