间充质干细胞
细胞生物学
再生(生物学)
转染
微载波
软骨
软骨发生
电穿孔
干细胞
透明软骨
自愈水凝胶
化学
生物
生物化学
病理
解剖
细胞
医学
关节软骨
基因
替代医学
有机化学
骨关节炎
作者
Jianguo Chen,Enchong Zhang,Yingying Wan,Tianyu Huang,Yu‐Chen Wang,Haiyue Jiang
标识
DOI:10.1002/adhm.202304194
摘要
Efforts are made to enhance the inherent potential of extracellular vesicles (EVs) by utilizing 3D culture platforms and engineered strategies for functional cargo-loading. Three distinct types of adipose mesenchymal stem cells-derived EVs (ADSCs-EVs) are successfully isolated utilizing 3D culture platforms consisting of porous gelatin methacryloyl (PG), PG combined with sericin methacryloyl (PG/SerMA), or PG combined with chondroitin sulfate methacryloyl (PG/ChSMA). These correspond to PG-EVs, PG/SerMA-EVs, and PG/ChSMA-EVs, respectively. Unique microRNA (miRNA) profiles are observed in each type of ADSCs-EVs. Notably, PG-EVs encapsulate higher levels of hsa-miR-455-3p and deliver more hsa-miR-455-3p to chondrocytes, which results in the activation of the hsa-miR-455-3p/PAK2/Smad2/3 axis and the subsequent hyaline cartilage regeneration. Furthermore, the functionality of PG-EVs is optimized through engineered strategies, including agomir/lentivirus transfection, electroporation, and Exo-Fect transfection. These strategies, referred to as Agomir-EVs, Lentivirus-EVs, Electroporation-EVs, and Exo-Fect-EVs, respectively, are ranked based on their efficacy in encapsulating hsa-miR-455-3p, delivering hsa-miR-455-3p to chondrocytes, and promoting cartilage formation via the hsa-miR-455-3p/PAK2/Smad2/3 axis. Notably, Exo-Fect-EVs exhibit the highest efficiency. Collectively, the 3D culture conditions and engineered strategies have an impact on the miRNA profiles and cartilage regeneration capabilities of ADSCs-EVs. The findings provide valuable insights into the mechanisms underlying the promotion of cartilage regeneration by ADSCs-EVs.
科研通智能强力驱动
Strongly Powered by AbleSci AI