Reshaping Phosphatase Substrate Preference for Controlled Biosynthesis Using a “Design–Build–Test–Learn” Framework

酶动力学 基质(水族馆) 合理设计 产量(工程) 突变体 蛋白质工程 立体化学 生物化学 化学 生化工程 活动站点 生物 纳米技术 材料科学 工程类 生态学 基因 冶金
作者
Jiangong Lu,Xueqin Lv,Wenwen Yu,Jianing Zhang,Jianxing Lu,Yanfeng Liu,Jianghua Li,Guocheng Du,Jian Chen,Long Liu
出处
期刊:Advanced Science [Wiley]
卷期号:11 (22) 被引量:5
标识
DOI:10.1002/advs.202309852
摘要

Abstract Biosynthesis is the application of enzymes in microbial cell factories and has emerged as a promising alternative to chemical synthesis. However, natural enzymes with limited catalytic performance often need to be engineered to meet specific needs through a time‐consuming trial‐and‐error process. This study presents a quantum mechanics (QM)‐incorporated design–build–test–learn (DBTL) framework to rationally design phosphatase BT4131, an enzyme with an ambiguous substrate spectrum involved in N ‐acetylglucosamine (GlcNAc) biosynthesis. First, mutant M1 (L129Q) is designed using force field‐based methods, resulting in a 1.4‐fold increase in substrate preference ( k cat / K m ) toward GlcNAc‐6‐phosphate (GlcNAc6P). QM calculations indicate that the shift in substrate preference is caused by a 13.59 kcal mol −1 reduction in activation energy. Furthermore, an iterative computer‐aided design is conducted to stabilize the transition state. As a result, mutant M4 (I49Q/L129Q/G172L) with a 9.5‐fold increase in k cat‐GlcNAc6P / K m‐GlcNAc6P and a 59% decrease in k cat‐Glc6P / K m‐Glc6P is highly desirable compared to the wild type in the GlcNAc‐producing chassis. The GlcNAc titer increases to 217.3 g L −1 with a yield of 0.597 g (g glucose) −1 in a 50‐L bioreactor, representing the highest reported level. Collectively, this DBTL framework provides an easy yet fascinating approach to the rational design of enzymes for industrially viable biocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
jianwen1完成签到,获得积分10
1秒前
劲秉应助知性的白猫采纳,获得20
2秒前
宗师算个瓢啊完成签到 ,获得积分10
2秒前
2秒前
IvanLIu完成签到 ,获得积分10
3秒前
3秒前
优美寻桃发布了新的文献求助10
3秒前
wry关闭了wry文献求助
4秒前
4秒前
hhhhhhhhhh完成签到 ,获得积分10
4秒前
冬云完成签到,获得积分10
4秒前
5秒前
5秒前
lcm完成签到,获得积分10
6秒前
dove发布了新的文献求助10
6秒前
6秒前
6秒前
科研通AI5应助酷酷语兰采纳,获得10
7秒前
zhaoa发布了新的文献求助10
7秒前
Ivychao发布了新的文献求助10
8秒前
冬云发布了新的文献求助10
10秒前
VDC发布了新的文献求助10
10秒前
犹豫酸奶完成签到,获得积分10
11秒前
小松鼠发布了新的文献求助10
11秒前
leekle完成签到,获得积分10
11秒前
12秒前
MZCCaiajie发布了新的文献求助10
12秒前
阿韦发布了新的文献求助10
15秒前
zhaoa完成签到,获得积分20
15秒前
tsntn完成签到,获得积分10
16秒前
keke发布了新的文献求助20
16秒前
Ivychao完成签到,获得积分10
17秒前
17秒前
17秒前
18秒前
19秒前
万能图书馆应助zhaoa采纳,获得10
19秒前
20秒前
东方天奇发布了新的文献求助10
20秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Munson, Young, and Okiishi’s Fundamentals of Fluid Mechanics 9 edition problem solution manual (metric) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3748570
求助须知:如何正确求助?哪些是违规求助? 3291631
关于积分的说明 10073772
捐赠科研通 3007459
什么是DOI,文献DOI怎么找? 1651612
邀请新用户注册赠送积分活动 786566
科研通“疑难数据库(出版商)”最低求助积分说明 751765