Classification of RF Fingerprint Signals from UAV Controller Using Machine Learning Techniques

指纹(计算) 计算机科学 指纹识别 人工智能 无线电频率 控制器(灌溉) 语音识别 模式识别(心理学) 电信 农学 生物
作者
Abya Singh,Vivek Sharma,Karun Rawat
标识
DOI:10.1109/mapcon58678.2023.10464162
摘要

Unmanned aerial vehicles (UAVs) have gained widespread popularity in various industries with advent in technology due to their advantages and cost-effectiveness, but they also pose serious threats to security if misused. Detection and classification of radio frequency (RF) signals obtained through communication between a drone and its controller is one of the ways to look out for and prevent misapplication of UAVs. This paper presents a novel approach to classify RF signals from distinct drones using machine learning (ML) techniques. The study involves training and evaluating of multiple ML models on a limited batch of dataset consisting of 5 specimens of RF signals from various drone types. In addition, the paper also identifies the key features of signals that are needed to be extracted from RF signal data for appropriate modeling and classification. The key objective of this research was to achieve best accuracy while using limited dataset by identifying and including most valuable features of RF signal. Important signal features like Mean, Variance, Skewness, Kurtosis and Energy Spectral Entropy were extracted from the RF data. Despite the minimal data used, the kNN classification achieves the accuracy of 88.2% with inclusion of all 17 classes of drones and improved to 92.86% when trained on 14 classes. This shows promising potential for real-world application. The study demonstrates that even with a small training dataset, ML techniques can effectively classify RF signals from drones.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hmhu发布了新的文献求助10
1秒前
1秒前
renjiu完成签到,获得积分10
2秒前
拾贰月完成签到 ,获得积分10
2秒前
Flori完成签到 ,获得积分10
2秒前
4秒前
靥礼服完成签到,获得积分10
5秒前
Ollm完成签到 ,获得积分10
5秒前
言亦云发布了新的文献求助10
5秒前
6秒前
zhengzehong完成签到,获得积分10
7秒前
学术垃圾发布了新的文献求助10
11秒前
完美世界应助无心的夏烟采纳,获得10
12秒前
12秒前
14秒前
热心易绿完成签到 ,获得积分10
14秒前
酷波er应助无心的夏烟采纳,获得10
15秒前
善学以致用应助靥礼服采纳,获得10
17秒前
坦率冰旋完成签到,获得积分10
19秒前
astost完成签到,获得积分10
19秒前
rayce发布了新的文献求助10
19秒前
chen完成签到,获得积分10
20秒前
一缕阳光完成签到,获得积分10
20秒前
23秒前
Hysen_L发布了新的文献求助10
24秒前
my196755发布了新的文献求助10
27秒前
27秒前
younghippo完成签到,获得积分10
27秒前
HHH发布了新的文献求助10
28秒前
SYLH应助amin采纳,获得10
30秒前
30秒前
桐桐应助无味采纳,获得30
31秒前
wangling2333完成签到,获得积分10
31秒前
文静映安发布了新的文献求助10
32秒前
tuzhifengyin完成签到,获得积分10
33秒前
懒羊羊完成签到,获得积分10
34秒前
学术芽完成签到,获得积分10
35秒前
rayce完成签到,获得积分10
36秒前
36秒前
my196755完成签到,获得积分10
39秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950988
求助须知:如何正确求助?哪些是违规求助? 3496346
关于积分的说明 11081695
捐赠科研通 3226885
什么是DOI,文献DOI怎么找? 1784005
邀请新用户注册赠送积分活动 868114
科研通“疑难数据库(出版商)”最低求助积分说明 800993