Classification of RF Fingerprint Signals from UAV Controller Using Machine Learning Techniques

指纹(计算) 计算机科学 指纹识别 人工智能 无线电频率 控制器(灌溉) 语音识别 模式识别(心理学) 电信 农学 生物
作者
Abya Singh,Vivek Sharma,Karun Rawat
标识
DOI:10.1109/mapcon58678.2023.10464162
摘要

Unmanned aerial vehicles (UAVs) have gained widespread popularity in various industries with advent in technology due to their advantages and cost-effectiveness, but they also pose serious threats to security if misused. Detection and classification of radio frequency (RF) signals obtained through communication between a drone and its controller is one of the ways to look out for and prevent misapplication of UAVs. This paper presents a novel approach to classify RF signals from distinct drones using machine learning (ML) techniques. The study involves training and evaluating of multiple ML models on a limited batch of dataset consisting of 5 specimens of RF signals from various drone types. In addition, the paper also identifies the key features of signals that are needed to be extracted from RF signal data for appropriate modeling and classification. The key objective of this research was to achieve best accuracy while using limited dataset by identifying and including most valuable features of RF signal. Important signal features like Mean, Variance, Skewness, Kurtosis and Energy Spectral Entropy were extracted from the RF data. Despite the minimal data used, the kNN classification achieves the accuracy of 88.2% with inclusion of all 17 classes of drones and improved to 92.86% when trained on 14 classes. This shows promising potential for real-world application. The study demonstrates that even with a small training dataset, ML techniques can effectively classify RF signals from drones.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zj发布了新的文献求助10
刚刚
笨笨chen发布了新的文献求助10
1秒前
木乙发布了新的文献求助10
1秒前
Lyyyw完成签到,获得积分10
2秒前
丙子哥完成签到 ,获得积分10
3秒前
桐桐应助homo采纳,获得10
3秒前
共享精神应助WN采纳,获得10
3秒前
4秒前
4秒前
天涯赤子完成签到,获得积分10
5秒前
马吉克wang完成签到,获得积分10
6秒前
zhangxueqing完成签到,获得积分10
6秒前
6秒前
SHAN发布了新的文献求助10
6秒前
dengdengdeng发布了新的文献求助30
7秒前
SYLH应助将将采纳,获得10
8秒前
8秒前
chuchu发布了新的文献求助10
9秒前
9秒前
10秒前
平常幼菱发布了新的文献求助10
11秒前
11秒前
12秒前
GongXX完成签到,获得积分10
13秒前
13秒前
寒冷的皮带完成签到 ,获得积分10
14秒前
子凡应助喜悦采纳,获得10
14秒前
我不会完成签到 ,获得积分10
16秒前
可爱的柜子完成签到,获得积分10
17秒前
17秒前
北筝发布了新的文献求助10
17秒前
朴素乐菱发布了新的文献求助10
17秒前
科研通AI5应助123采纳,获得50
19秒前
欢喜的跳跳糖完成签到 ,获得积分10
20秒前
喜悦完成签到,获得积分10
20秒前
Augenstern完成签到 ,获得积分10
21秒前
活泼毛豆发布了新的文献求助10
21秒前
jixin应助dzyong采纳,获得10
22秒前
22秒前
找不完发布了新的文献求助10
22秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3743461
求助须知:如何正确求助?哪些是违规求助? 3286043
关于积分的说明 10049030
捐赠科研通 3002696
什么是DOI,文献DOI怎么找? 1648356
邀请新用户注册赠送积分活动 784617
科研通“疑难数据库(出版商)”最低求助积分说明 750780