Classification of RF Fingerprint Signals from UAV Controller Using Machine Learning Techniques

指纹(计算) 计算机科学 指纹识别 人工智能 无线电频率 控制器(灌溉) 语音识别 模式识别(心理学) 电信 农学 生物
作者
Abya Singh,Vivek Sharma,Karun Rawat
标识
DOI:10.1109/mapcon58678.2023.10464162
摘要

Unmanned aerial vehicles (UAVs) have gained widespread popularity in various industries with advent in technology due to their advantages and cost-effectiveness, but they also pose serious threats to security if misused. Detection and classification of radio frequency (RF) signals obtained through communication between a drone and its controller is one of the ways to look out for and prevent misapplication of UAVs. This paper presents a novel approach to classify RF signals from distinct drones using machine learning (ML) techniques. The study involves training and evaluating of multiple ML models on a limited batch of dataset consisting of 5 specimens of RF signals from various drone types. In addition, the paper also identifies the key features of signals that are needed to be extracted from RF signal data for appropriate modeling and classification. The key objective of this research was to achieve best accuracy while using limited dataset by identifying and including most valuable features of RF signal. Important signal features like Mean, Variance, Skewness, Kurtosis and Energy Spectral Entropy were extracted from the RF data. Despite the minimal data used, the kNN classification achieves the accuracy of 88.2% with inclusion of all 17 classes of drones and improved to 92.86% when trained on 14 classes. This shows promising potential for real-world application. The study demonstrates that even with a small training dataset, ML techniques can effectively classify RF signals from drones.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
一个球一个蛋儿完成签到,获得积分10
刚刚
2秒前
搞怪的千秋完成签到,获得积分10
2秒前
miaomiao完成签到,获得积分10
3秒前
彭于晏应助754采纳,获得10
4秒前
Yangon发布了新的文献求助10
9秒前
小呆子发布了新的文献求助10
9秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
shell完成签到,获得积分10
10秒前
金汐完成签到,获得积分10
11秒前
布里田完成签到 ,获得积分10
11秒前
yh完成签到,获得积分10
12秒前
yy关闭了yy文献求助
13秒前
科研通AI6.1应助娜娜采纳,获得10
13秒前
无花果应助乐邦采纳,获得10
13秒前
13秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
Sicily发布了新的文献求助10
15秒前
清修完成签到,获得积分10
15秒前
李健应助Yangon采纳,获得10
16秒前
拉哈80应助痴情的香魔采纳,获得20
17秒前
17秒前
Muncy完成签到 ,获得积分10
19秒前
21秒前
星辰大海应助小呆子采纳,获得10
21秒前
心灵美鑫完成签到 ,获得积分10
21秒前
22秒前
lyk2815完成签到,获得积分10
22秒前
一万朵蝴蝶完成签到,获得积分10
25秒前
汉堡包应助Sicily采纳,获得10
25秒前
26秒前
51区完成签到,获得积分10
26秒前
女王完成签到 ,获得积分10
27秒前
完美世界应助平凡采纳,获得10
28秒前
28秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742315
求助须知:如何正确求助?哪些是违规求助? 5407721
关于积分的说明 15344704
捐赠科研通 4883721
什么是DOI,文献DOI怎么找? 2625220
邀请新用户注册赠送积分活动 1574084
关于科研通互助平台的介绍 1531060