Exploring single-molecule interactions: heparin and FGF-1 proteins through solid-state nanopores

纳米孔 肝素 分子 成纤维细胞生长因子 小分子 纳米技术 材料科学 生物物理学 化学 生物化学 生物 有机化学 受体
作者
Navod Thyashan,Madhav Ghimire,Sangyoup Lee,Min Jun Kim
出处
期刊:Nanoscale [Royal Society of Chemistry]
卷期号:16 (17): 8352-8360 被引量:2
标识
DOI:10.1039/d4nr00274a
摘要

Detection and characterization of protein-protein interactions are essential for many cellular processes, such as cell growth, tissue repair, drug delivery, and other physiological functions. In our research, we have utilized emerging solid-state nanopore sensing technology, which is highly sensitive to better understand heparin and fibroblast growth factor 1 (FGF-1) protein interactions at a single-molecule level without any modifications. Understanding the structure and behavior of heparin-FGF-1 complexes at the single-molecule level is very important. An abnormality in their formation can lead to life-threatening conditions like tumor growth, fibrosis, and neurological disorders. Using a controlled dielectric breakdown pore fabrication approach, we have characterized individual heparin and FGF-1 (one of the 22 known FGFs in humans) proteins through the fabrication of 17 ± 1 nm nanopores. Compared to heparin, the positively charged heparin-binding domains of some FGF-1 proteins translocationally react with the pore walls, giving rise to a distinguishable second peak with higher current blockade. Additionally, we have confirmed that the dynamic FGF-1 is stabilized upon binding with heparin-FGF-1 at the single-molecule level. The larger current blockades from the complexes relative to individual heparin and the FGF-1 recorded during the translocation ensure the binding of heparin-FGF-1 proteins, forming binding complexes with higher excluded volumes. Taken together, we demonstrate that solid-state nanopores can be employed to investigate the properties of individual proteins and their complex interactions, potentially paving the way for innovative medical therapies and advancements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SHDeathlock完成签到,获得积分10
1秒前
illmaticRui完成签到,获得积分10
1秒前
1秒前
ashton完成签到,获得积分10
1秒前
爱撒娇的西装完成签到,获得积分10
1秒前
2秒前
思源应助萝卜干采纳,获得10
2秒前
psclib发布了新的文献求助10
2秒前
星球大疯子完成签到,获得积分20
3秒前
lujiajia发布了新的文献求助10
3秒前
3秒前
4秒前
开心发布了新的文献求助30
4秒前
一骑绝尘发布了新的文献求助10
6秒前
6秒前
6秒前
风禾完成签到 ,获得积分10
6秒前
搜集达人应助搞搞学术吧采纳,获得20
7秒前
sola完成签到,获得积分10
7秒前
7秒前
8秒前
嘻嘻发布了新的文献求助10
8秒前
8秒前
七少爷发布了新的文献求助10
9秒前
七七发布了新的文献求助10
10秒前
传奇3应助jinxinyang0903采纳,获得10
10秒前
啾咪完成签到,获得积分10
10秒前
Miaochen发布了新的文献求助10
10秒前
Lucas应助大胆惊蛰采纳,获得10
11秒前
香蕉觅云应助辛勤的太兰采纳,获得10
11秒前
12秒前
12秒前
huskies发布了新的文献求助10
12秒前
12秒前
12秒前
zxc完成签到,获得积分10
12秒前
谭亮发布了新的文献求助10
13秒前
CodeCraft应助星球大疯子采纳,获得10
13秒前
所所应助我是压实度采纳,获得10
14秒前
脑洞疼应助林子采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Aircraft Engine Design, Third Edition 308
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5155889
求助须知:如何正确求助?哪些是违规求助? 4351488
关于积分的说明 13549100
捐赠科研通 4194416
什么是DOI,文献DOI怎么找? 2300527
邀请新用户注册赠送积分活动 1300474
关于科研通互助平台的介绍 1245484