The influence of demographic structure on residential buildings' carbon emissions in China

中国 温室气体 环境科学 建筑工程 地理 工程类 生态学 生物 考古
作者
Liu Chen,Kairui You,Gengpei Lv,Weiguang Cai,Jinbo Zhang,Yang Zhang
出处
期刊:Journal of building engineering [Elsevier]
卷期号:87: 108951-108951 被引量:24
标识
DOI:10.1016/j.jobe.2024.108951
摘要

In the process of advancing China's carbon peak strategy, the residential building is a crucial sector for carbon mitigation. The energy demand for residential buildings, which is dominated by household consumption, is rapidly rising; coping with aging crisis and reducing carbon dioxide (CO2) emissions are two major challenges facing China. This study explores the complex relation between demographic structure and residential buildings' CO2 emissions, and then simulates the future carbon peaking trajectory based on scenario prediction model. The relevant results are fourfold. 1) The overall coupling coordination degree of demographic structure and residential buildings' CO2 emissions in China has entered the optimal state (i.e. high-quality coordination level) until 2020. 2) The increased household size and proportion of children population from 2010 to 2020 had an inhibitory effect on residential buildings' CO2 emissions, whereas increased population size and proportion of elderly population had a promotional effect. 3) Under the influence of demographic structure change, peak residential buildings' CO2 emissions are predicted to be delayed from 2030 to 2032 in China, and the peak value will increase by 3.56%, reaching 1.527 billion tons. 4) At the provincial degree, under the baseline scenario, Beijing will be the first to achieve peak CO2 emissions in 2026; under the aging scenario, Yunnan and Beijing will be the first to reach peak CO2 emissions in 2028. This study provides a reference for Chinese policymakers and other countries to incorporate demographic structure into future projections to advance carbon reduction targets' achievement in the building sector.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Chichi发布了新的文献求助10
刚刚
HowesFeng发布了新的文献求助10
刚刚
1秒前
苏silence发布了新的文献求助10
1秒前
易楠发布了新的文献求助10
1秒前
ning完成签到,获得积分10
1秒前
六百六十六完成签到,获得积分10
1秒前
发发发发布了新的文献求助30
1秒前
852应助crytek采纳,获得50
1秒前
长颈鹿发布了新的文献求助10
1秒前
2秒前
guozizi发布了新的文献求助10
2秒前
zhong完成签到,获得积分10
2秒前
yulong完成签到,获得积分10
2秒前
高登登发布了新的文献求助10
3秒前
Criminology34应助DueDue0327采纳,获得10
3秒前
漂亮的秋天完成签到 ,获得积分10
3秒前
anny2022完成签到,获得积分10
3秒前
Patty发布了新的文献求助10
3秒前
吕培森发布了新的文献求助10
3秒前
3秒前
称心寒松完成签到,获得积分10
3秒前
jay2000完成签到,获得积分10
4秒前
虹虹完成签到 ,获得积分10
4秒前
Frank应助美满的太英采纳,获得10
5秒前
redflower发布了新的文献求助10
5秒前
小笼包发布了新的文献求助10
5秒前
CipherSage应助tinatian270采纳,获得10
5秒前
李归来完成签到 ,获得积分10
5秒前
阳佟天川完成签到,获得积分10
5秒前
Owen应助melody采纳,获得30
6秒前
精明柜子应助重楼远志采纳,获得100
6秒前
解语花完成签到,获得积分10
6秒前
6秒前
Jasper应助啦啦啦采纳,获得10
6秒前
精明人达完成签到,获得积分10
7秒前
7秒前
由哎完成签到,获得积分10
7秒前
mlzmlz完成签到,获得积分0
7秒前
杨嘉璐完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573946
求助须知:如何正确求助?哪些是违规求助? 4660289
关于积分的说明 14728668
捐赠科研通 4600067
什么是DOI,文献DOI怎么找? 2524676
邀请新用户注册赠送积分活动 1495011
关于科研通互助平台的介绍 1465006