已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The influence of demographic structure on residential buildings' carbon emissions in China

中国 温室气体 环境科学 建筑工程 地理 工程类 生态学 生物 考古
作者
Liu Chen,Kairui You,Gengpei Lv,Weiguang Cai,Jinbo Zhang,Yang Zhang
出处
期刊:Journal of building engineering [Elsevier]
卷期号:87: 108951-108951 被引量:24
标识
DOI:10.1016/j.jobe.2024.108951
摘要

In the process of advancing China's carbon peak strategy, the residential building is a crucial sector for carbon mitigation. The energy demand for residential buildings, which is dominated by household consumption, is rapidly rising; coping with aging crisis and reducing carbon dioxide (CO2) emissions are two major challenges facing China. This study explores the complex relation between demographic structure and residential buildings' CO2 emissions, and then simulates the future carbon peaking trajectory based on scenario prediction model. The relevant results are fourfold. 1) The overall coupling coordination degree of demographic structure and residential buildings' CO2 emissions in China has entered the optimal state (i.e. high-quality coordination level) until 2020. 2) The increased household size and proportion of children population from 2010 to 2020 had an inhibitory effect on residential buildings' CO2 emissions, whereas increased population size and proportion of elderly population had a promotional effect. 3) Under the influence of demographic structure change, peak residential buildings' CO2 emissions are predicted to be delayed from 2030 to 2032 in China, and the peak value will increase by 3.56%, reaching 1.527 billion tons. 4) At the provincial degree, under the baseline scenario, Beijing will be the first to achieve peak CO2 emissions in 2026; under the aging scenario, Yunnan and Beijing will be the first to reach peak CO2 emissions in 2028. This study provides a reference for Chinese policymakers and other countries to incorporate demographic structure into future projections to advance carbon reduction targets' achievement in the building sector.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
BowieHuang应助yanni采纳,获得10
1秒前
科研通AI6.1应助酷酷如楠采纳,获得10
1秒前
李健应助李青松采纳,获得10
2秒前
汉堡包应助发的不太好采纳,获得10
2秒前
王先生发布了新的文献求助10
7秒前
7秒前
9秒前
哈哈完成签到 ,获得积分10
9秒前
王富贵完成签到,获得积分10
11秒前
愉快凉面完成签到,获得积分10
11秒前
12秒前
13秒前
英姑应助爱吃米线采纳,获得10
13秒前
李青松发布了新的文献求助10
13秒前
科研通AI2S应助岂曰无衣采纳,获得10
14秒前
15秒前
16秒前
xw发布了新的文献求助30
17秒前
VuuVuu发布了新的文献求助10
20秒前
xw完成签到,获得积分20
23秒前
24秒前
Kyros完成签到 ,获得积分10
25秒前
木棉完成签到,获得积分10
26秒前
26秒前
李健的小迷弟应助yyy采纳,获得10
27秒前
29秒前
爱吃米线发布了新的文献求助10
30秒前
31秒前
抚琴祛魅完成签到 ,获得积分10
31秒前
万能图书馆应助木棉采纳,获得10
32秒前
37秒前
38秒前
酷酷如楠发布了新的文献求助10
40秒前
40秒前
41秒前
落叶捎来讯息完成签到 ,获得积分10
41秒前
大个应助xmjy采纳,获得10
43秒前
吴明智发布了新的文献求助10
43秒前
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772064
求助须知:如何正确求助?哪些是违规求助? 5595843
关于积分的说明 15429020
捐赠科研通 4905213
什么是DOI,文献DOI怎么找? 2639255
邀请新用户注册赠送积分活动 1587179
关于科研通互助平台的介绍 1542049