The influence of demographic structure on residential buildings' carbon emissions in China

中国 温室气体 环境科学 建筑工程 地理 工程类 生态学 生物 考古
作者
Liu Chen,Kairui You,Gengpei Lv,Weiguang Cai,Jinbo Zhang,Yang Zhang
出处
期刊:Journal of building engineering [Elsevier]
卷期号:87: 108951-108951 被引量:24
标识
DOI:10.1016/j.jobe.2024.108951
摘要

In the process of advancing China's carbon peak strategy, the residential building is a crucial sector for carbon mitigation. The energy demand for residential buildings, which is dominated by household consumption, is rapidly rising; coping with aging crisis and reducing carbon dioxide (CO2) emissions are two major challenges facing China. This study explores the complex relation between demographic structure and residential buildings' CO2 emissions, and then simulates the future carbon peaking trajectory based on scenario prediction model. The relevant results are fourfold. 1) The overall coupling coordination degree of demographic structure and residential buildings' CO2 emissions in China has entered the optimal state (i.e. high-quality coordination level) until 2020. 2) The increased household size and proportion of children population from 2010 to 2020 had an inhibitory effect on residential buildings' CO2 emissions, whereas increased population size and proportion of elderly population had a promotional effect. 3) Under the influence of demographic structure change, peak residential buildings' CO2 emissions are predicted to be delayed from 2030 to 2032 in China, and the peak value will increase by 3.56%, reaching 1.527 billion tons. 4) At the provincial degree, under the baseline scenario, Beijing will be the first to achieve peak CO2 emissions in 2026; under the aging scenario, Yunnan and Beijing will be the first to reach peak CO2 emissions in 2028. This study provides a reference for Chinese policymakers and other countries to incorporate demographic structure into future projections to advance carbon reduction targets' achievement in the building sector.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yaohuici发布了新的文献求助10
1秒前
1秒前
Deng发布了新的文献求助10
1秒前
英俊的铭应助是小袁呀采纳,获得10
2秒前
英姑应助alex采纳,获得10
3秒前
faye发布了新的文献求助10
5秒前
Ava应助ndsiu采纳,获得10
5秒前
yu发布了新的文献求助10
6秒前
6秒前
6秒前
KAIDOHARA完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助30
7秒前
xzxhh完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
8秒前
小雨关注了科研通微信公众号
9秒前
xin发布了新的文献求助10
10秒前
11秒前
朴实雨竹完成签到,获得积分10
11秒前
从容曼文发布了新的文献求助10
11秒前
安详的未来完成签到,获得积分10
11秒前
科研通AI6应助读书的时候采纳,获得10
12秒前
12秒前
12秒前
13秒前
江上发布了新的文献求助10
13秒前
顾矜应助益生菌小哥采纳,获得10
13秒前
louis dai发布了新的文献求助10
13秒前
xzxhh关注了科研通微信公众号
13秒前
Akim应助外向梦山采纳,获得10
13秒前
15秒前
布丁完成签到 ,获得积分10
15秒前
16秒前
16秒前
无情墨镜发布了新的文献求助10
16秒前
curtisness应助珠珠崽子采纳,获得10
16秒前
zdd发布了新的文献求助10
17秒前
嘿嘿完成签到,获得积分10
17秒前
黑悦完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5720320
求助须知:如何正确求助?哪些是违规求助? 5259567
关于积分的说明 15290807
捐赠科研通 4869734
什么是DOI,文献DOI怎么找? 2614988
邀请新用户注册赠送积分活动 1564964
关于科研通互助平台的介绍 1522137