The influence of demographic structure on residential buildings' carbon emissions in China

中国 温室气体 环境科学 建筑工程 地理 工程类 生态学 生物 考古
作者
Liu Chen,Kairui You,Gengpei Lv,Weiguang Cai,Jinbo Zhang,Yang Zhang
出处
期刊:Journal of building engineering [Elsevier]
卷期号:87: 108951-108951 被引量:6
标识
DOI:10.1016/j.jobe.2024.108951
摘要

In the process of advancing China's carbon peak strategy, the residential building is a crucial sector for carbon mitigation. The energy demand for residential buildings, which is dominated by household consumption, is rapidly rising; coping with aging crisis and reducing carbon dioxide (CO2) emissions are two major challenges facing China. This study explores the complex relation between demographic structure and residential buildings' CO2 emissions, and then simulates the future carbon peaking trajectory based on scenario prediction model. The relevant results are fourfold. 1) The overall coupling coordination degree of demographic structure and residential buildings' CO2 emissions in China has entered the optimal state (i.e. high-quality coordination level) until 2020. 2) The increased household size and proportion of children population from 2010 to 2020 had an inhibitory effect on residential buildings' CO2 emissions, whereas increased population size and proportion of elderly population had a promotional effect. 3) Under the influence of demographic structure change, peak residential buildings' CO2 emissions are predicted to be delayed from 2030 to 2032 in China, and the peak value will increase by 3.56%, reaching 1.527 billion tons. 4) At the provincial degree, under the baseline scenario, Beijing will be the first to achieve peak CO2 emissions in 2026; under the aging scenario, Yunnan and Beijing will be the first to reach peak CO2 emissions in 2028. This study provides a reference for Chinese policymakers and other countries to incorporate demographic structure into future projections to advance carbon reduction targets' achievement in the building sector.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
干净初雪完成签到,获得积分10
1秒前
2秒前
2秒前
Eason发布了新的文献求助10
2秒前
3秒前
我是老大应助英俊未来采纳,获得10
4秒前
田田田田发布了新的文献求助10
4秒前
Leoniko完成签到,获得积分10
7秒前
7秒前
7秒前
123发布了新的文献求助10
8秒前
上官子默完成签到,获得积分10
8秒前
9秒前
三石完成签到,获得积分10
9秒前
Phuctanpct完成签到,获得积分20
9秒前
10秒前
10秒前
zai发布了新的文献求助10
11秒前
Lynette8888完成签到 ,获得积分10
12秒前
12秒前
13秒前
qqa完成签到,获得积分10
13秒前
孤独靖柏发布了新的文献求助10
14秒前
15秒前
15秒前
kelly发布了新的文献求助10
16秒前
16秒前
LOVE17发布了新的文献求助10
16秒前
Eva完成签到,获得积分10
17秒前
Pattis完成签到 ,获得积分10
18秒前
Lynette8888发布了新的文献求助20
19秒前
19秒前
20秒前
20秒前
壮观寒荷完成签到,获得积分10
21秒前
23秒前
贤惠的碧空完成签到,获得积分10
26秒前
mmr完成签到,获得积分10
26秒前
丘比特应助Source采纳,获得10
27秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159909
求助须知:如何正确求助?哪些是违规求助? 2810952
关于积分的说明 7890034
捐赠科研通 2469969
什么是DOI,文献DOI怎么找? 1315243
科研通“疑难数据库(出版商)”最低求助积分说明 630771
版权声明 602012