Deciphering N-Doped Biochar Design for Non-Radical Pathways through Hierarchical Machine Learning

生物炭 兴奋剂 计算机科学 化学 人工智能 材料科学 有机化学 光电子学 热解
作者
Rupeng Wang,Zixiang He,Honglin Chen,Ke Wang,Shiyu Zhang,Nanqi Ren,Shih‐Hsin Ho
出处
期刊:ACS ES&T engineering [American Chemical Society]
卷期号:4 (7): 1738-1747 被引量:4
标识
DOI:10.1021/acsestengg.4c00093
摘要

Biochar has been widely employed for the promotion of advanced oxidation processes (AOPs) and when combined with nitrogen doping for charge distribution mediation, N-doped biochar (NBC) can serve as a highly effective catalyst for the degradation of persistent organic pollutants. However, due to the variety of doping and preparation methods, the intrinsic active sites for AOP catalysis have not been clearly identified. Furthermore, the complex relationships between preparation method, material properties, and catalytic degradation pathways remain unclear, impeding the widespread practical application of NBC. Herein, machine learning (ML) was implemented to predict the degradation pathway and identify the vital properties of N-doping required for the acceleration of AOPs. During the process of model training, an innovative method of data set splitting was applied, comparing the results generated from multiple models to enhance model interpretability. We elucidated the correlation between the primary features and nonradical pathway, focusing on the contribution of N species and the regulatory role of pyrolysis temperature. Detailed insights were further provided to enhance the ratio design of NBC for nonradical mediation. Overall, this study offers novel insights into NBC-mediated AOPs for pollution control, underscoring the significant potential of ML for accelerating catalyst applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
任瑶完成签到,获得积分10
1秒前
上官若男应助wwf采纳,获得10
1秒前
van发布了新的文献求助10
1秒前
asdfqwer应助xzy998采纳,获得10
1秒前
3秒前
6秒前
大马猴发布了新的文献求助10
6秒前
任瑶发布了新的文献求助10
8秒前
脸就是黑啊完成签到,获得积分10
8秒前
夏虫语冰完成签到,获得积分20
8秒前
CYL07发布了新的文献求助10
9秒前
大个应助曦臐采纳,获得10
10秒前
cadcae发布了新的文献求助30
10秒前
首席或雪月完成签到,获得积分10
12秒前
Aurora发布了新的文献求助10
12秒前
科研通AI5应助van采纳,获得10
12秒前
ThunderChen发布了新的文献求助10
13秒前
14秒前
3565完成签到,获得积分10
14秒前
15秒前
坚强的夏瑶完成签到,获得积分20
17秒前
追寻的城完成签到,获得积分20
18秒前
EyziXu完成签到,获得积分20
18秒前
Emily发布了新的文献求助10
21秒前
vikoer发布了新的文献求助10
21秒前
21秒前
GuMingyang发布了新的文献求助10
22秒前
25秒前
Zhou完成签到,获得积分10
31秒前
科研通AI5应助淡定小懒猪采纳,获得10
36秒前
酷波er应助Wang采纳,获得10
39秒前
zhuyan完成签到,获得积分10
42秒前
领导范儿应助科研通管家采纳,获得10
42秒前
43秒前
烟花应助科研通管家采纳,获得10
43秒前
Jasper应助科研通管家采纳,获得10
43秒前
Owen应助科研通管家采纳,获得10
43秒前
NexusExplorer应助科研通管家采纳,获得30
43秒前
充电宝应助科研通管家采纳,获得10
43秒前
科研通AI5应助科研通管家采纳,获得10
43秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3669998
求助须知:如何正确求助?哪些是违规求助? 3227414
关于积分的说明 9775372
捐赠科研通 2937577
什么是DOI,文献DOI怎么找? 1609384
邀请新用户注册赠送积分活动 760339
科研通“疑难数据库(出版商)”最低求助积分说明 735792