重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Skeleton Recall Loss for Connectivity Conserving and Resource Efficient Segmentation of Thin Tubular Structures

骨架(计算机编程) 分割 召回 计算机科学 资源(消歧) 人工智能 业务 心理学 认知心理学 计算机网络 程序设计语言
作者
Yannick Kirchhoff,Maximilian R. Rokuss,Saikat Roy,Bálint Kovàcs,Constantin Ulrich,Tassilo Wald,Maximilian Zenk,Philipp Kickingereder,Jens Kleesiek,Fabian Isensee,Klaus H. Maier‐Hein
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2404.03010
摘要

Accurately segmenting thin tubular structures, such as vessels, nerves, roads or concrete cracks, is a crucial task in computer vision. Standard deep learning-based segmentation loss functions, such as Dice or Cross-Entropy, focus on volumetric overlap, often at the expense of preserving structural connectivity or topology. This can lead to segmentation errors that adversely affect downstream tasks, including flow calculation, navigation, and structural inspection. Although current topology-focused losses mark an improvement, they introduce significant computational and memory overheads. This is particularly relevant for 3D data, rendering these losses infeasible for larger volumes as well as increasingly important multi-class segmentation problems. To mitigate this, we propose a novel Skeleton Recall Loss, which effectively addresses these challenges by circumventing intensive GPU-based calculations with inexpensive CPU operations. It demonstrates overall superior performance to current state-of-the-art approaches on five public datasets for topology-preserving segmentation, while substantially reducing computational overheads by more than 90%. In doing so, we introduce the first multi-class capable loss function for thin structure segmentation, excelling in both efficiency and efficacy for topology-preservation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Chenzhs完成签到,获得积分10
1秒前
管遥完成签到,获得积分10
1秒前
1秒前
善良诗珊完成签到,获得积分10
2秒前
布吉岛发布了新的文献求助10
2秒前
一碗晚月完成签到,获得积分10
2秒前
Morssax完成签到,获得积分10
4秒前
4秒前
浮游应助zhuzhu采纳,获得10
4秒前
稳重盼夏发布了新的文献求助10
5秒前
wanci应助碧蓝的往事采纳,获得10
5秒前
5秒前
5秒前
5秒前
疯子零零完成签到,获得积分10
6秒前
眯眯眼的语雪完成签到,获得积分10
6秒前
7秒前
WY完成签到,获得积分10
7秒前
STEAD完成签到,获得积分10
9秒前
DrPanda完成签到,获得积分10
9秒前
小太阳发布了新的文献求助10
9秒前
研友_VZG7GZ应助Penn采纳,获得10
9秒前
10秒前
无花果应助眯眯眼的语雪采纳,获得10
10秒前
卡卡罗特完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
10秒前
aaaa完成签到,获得积分10
11秒前
13秒前
zhouyong完成签到,获得积分10
13秒前
浮游应助Literaturecome采纳,获得10
14秒前
masterwill发布了新的文献求助10
14秒前
lz发布了新的文献求助10
15秒前
16秒前
yafei完成签到 ,获得积分10
16秒前
dahua发布了新的文献求助30
16秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5465838
求助须知:如何正确求助?哪些是违规求助? 4570083
关于积分的说明 14322455
捐赠科研通 4496549
什么是DOI,文献DOI怎么找? 2463392
邀请新用户注册赠送积分活动 1452295
关于科研通互助平台的介绍 1427497