Skeleton Recall Loss for Connectivity Conserving and Resource Efficient Segmentation of Thin Tubular Structures

骨架(计算机编程) 分割 召回 计算机科学 资源(消歧) 人工智能 业务 心理学 认知心理学 计算机网络 程序设计语言
作者
Yannick Kirchhoff,Maximilian R. Rokuss,Saikat Roy,Bálint Kovàcs,Constantin Ulrich,Tassilo Wald,Maximilian Zenk,Philipp Kickingereder,Jens Kleesiek,Fabian Isensee,Klaus H. Maier‐Hein
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2404.03010
摘要

Accurately segmenting thin tubular structures, such as vessels, nerves, roads or concrete cracks, is a crucial task in computer vision. Standard deep learning-based segmentation loss functions, such as Dice or Cross-Entropy, focus on volumetric overlap, often at the expense of preserving structural connectivity or topology. This can lead to segmentation errors that adversely affect downstream tasks, including flow calculation, navigation, and structural inspection. Although current topology-focused losses mark an improvement, they introduce significant computational and memory overheads. This is particularly relevant for 3D data, rendering these losses infeasible for larger volumes as well as increasingly important multi-class segmentation problems. To mitigate this, we propose a novel Skeleton Recall Loss, which effectively addresses these challenges by circumventing intensive GPU-based calculations with inexpensive CPU operations. It demonstrates overall superior performance to current state-of-the-art approaches on five public datasets for topology-preserving segmentation, while substantially reducing computational overheads by more than 90%. In doing so, we introduce the first multi-class capable loss function for thin structure segmentation, excelling in both efficiency and efficacy for topology-preservation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ilujy完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
1秒前
久别完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
3秒前
王梽旭发布了新的文献求助10
3秒前
3秒前
小新同学完成签到,获得积分10
4秒前
4秒前
4秒前
CQ完成签到,获得积分10
4秒前
5秒前
小吴发布了新的文献求助10
5秒前
5秒前
hhh发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
扶休完成签到,获得积分10
6秒前
6秒前
咩咩发布了新的文献求助10
7秒前
霸气映之发布了新的文献求助10
7秒前
Felix发布了新的文献求助10
7秒前
7秒前
柳七完成签到,获得积分10
8秒前
8秒前
哈哈发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
Minguk发布了新的文献求助10
9秒前
王梽旭完成签到,获得积分20
10秒前
10秒前
10秒前
彭于晏应助面包采纳,获得10
10秒前
小吴完成签到,获得积分10
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969383
求助须知:如何正确求助?哪些是违规求助? 3514211
关于积分的说明 11172730
捐赠科研通 3249476
什么是DOI,文献DOI怎么找? 1794909
邀请新用户注册赠送积分活动 875441
科研通“疑难数据库(出版商)”最低求助积分说明 804827