亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Disentangling Client Contributions: Improving Federated Learning Accuracy in the Presence of Heterogeneous Data

计算机科学 联合学习 数据科学 数据挖掘 人工智能
作者
Chunming Liu,Daniyal Alghazzawi,Cheng Li,Gaoyang Liu,Chen Wang,Cheng Zeng,Yang Yang
标识
DOI:10.1109/ispa-bdcloud-socialcom-sustaincom59178.2023.00082
摘要

Federated Learning (FL) is a promising paradigm that leverages distributed data sources to train machine learning models, thereby offering significant privacy advantages. However, the inherent statistical heterogeneity among clients, characterized by distinct data distributions and varying model performance, poses a substantial challenge. Such heterogeneity adversely affects both the convergence and overall performance of the global model within the FL framework. To address this issue, we introduce a novel FL algorithm, FedVa, which considers both the local data volume and model accuracy to determine client contributions, assigning respective weights. This consideration facilitates greater engagement from key clients during the aggregation process, thereby enhancing their influence on the global model refinement. Experimental results indicate that FedVa surpasses prevailing methods in managing statistical heterogeneity and enhancing global model accuracy, without incurring additional communication costs. Specifically, FedVa achieves a convergence speed 3.9 times faster than FedAvg on the MNIST dataset, and on the CIFAR-10 dataset, it results in a 2.3% increase in final model accuracy compared to FedAvg. Our code is publicly available at https://github.com/ChunmingLiu23/FedVa.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
漫步随心完成签到,获得积分20
28秒前
NexusExplorer应助科研通管家采纳,获得10
39秒前
39秒前
今后应助nsc采纳,获得10
52秒前
bkagyin应助nsc采纳,获得10
52秒前
小二郎应助nsc采纳,获得10
52秒前
Jasper应助nsc采纳,获得10
52秒前
李爱国应助nsc采纳,获得10
52秒前
脑洞疼应助nsc采纳,获得10
52秒前
慕青应助nsc采纳,获得10
52秒前
天天快乐应助nsc采纳,获得10
52秒前
Akim应助nsc采纳,获得10
52秒前
充电宝应助nsc采纳,获得10
52秒前
量子星尘发布了新的文献求助30
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
nsc发布了新的文献求助10
1分钟前
nsc发布了新的文献求助10
1分钟前
nsc发布了新的文献求助100
1分钟前
nsc发布了新的文献求助10
1分钟前
nsc发布了新的文献求助30
1分钟前
nsc发布了新的文献求助10
1分钟前
nsc发布了新的文献求助10
1分钟前
nsc发布了新的文献求助10
1分钟前
nsc发布了新的文献求助10
1分钟前
nsc发布了新的文献求助10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957061
求助须知:如何正确求助?哪些是违规求助? 3503084
关于积分的说明 11111255
捐赠科研通 3234121
什么是DOI,文献DOI怎么找? 1787751
邀请新用户注册赠送积分活动 870762
科研通“疑难数据库(出版商)”最低求助积分说明 802264