Prototype-Based Semantic Segmentation

计算机科学 分割 Softmax函数 人工智能 像素 模式识别(心理学) 参数统计 非参数统计 人工神经网络 数学 统计
作者
Tianfei Zhou,Wenguan Wang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:46 (10): 6858-6872 被引量:14
标识
DOI:10.1109/tpami.2024.3387116
摘要

Deep learning based semantic segmentation solutions have yielded compelling results over the preceding decade. They encompass diverse network architectures (FCN based or attention based), along with various mask decoding schemes (parametric softmax based or pixel-query based). Despite the divergence, they can be grouped within a unified framework by interpreting the softmax weights or query vectors as learnable class prototypes. In light of this prototype view, we reveal inherent limitations within the parametric segmentation regime, and accordingly develop a nonparametric alternative based on non-learnable prototypes. In contrast to previous approaches that entail the learning of a single weight/query vector per class in a fully parametric manner, our approach represents each class as a set of non-learnable prototypes, relying solely upon the mean features of training pixels within that class. The pixel-wise prediction is thus achieved by nonparametric nearest prototype retrieving. This allows our model to directly shape the pixel embedding space by optimizing the arrangement between embedded pixels and anchored prototypes. It is able to accommodate an arbitrary number of classes with a constant number of learnable parameters. Through empirical evaluation with FCN based and Transformer based segmentation models (i.e., HRNet, Swin, SegFormer, Mask2Former) and backbones (i.e., ResNet, HRNet, Swin, MiT), our nonparametric framework shows superior performance on standard segmentation datasets (i.e., ADE20K, Cityscapes, COCO-Stuff), as well as in large-vocabulary semantic segmentation scenarios. We expect that this study will provoke a rethink of the current de facto semantic segmentation model design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuanjingnan完成签到,获得积分10
刚刚
jialiu完成签到,获得积分10
刚刚
1秒前
停婷发布了新的文献求助10
2秒前
bingbing发布了新的文献求助10
2秒前
菠萝炒饭完成签到,获得积分10
3秒前
一键三连发布了新的文献求助10
3秒前
琦琦发布了新的文献求助10
4秒前
liuzengzhang666完成签到,获得积分10
4秒前
5秒前
。。。完成签到,获得积分10
5秒前
5秒前
6秒前
ED应助牛马人生采纳,获得10
6秒前
achill完成签到,获得积分10
6秒前
Hui完成签到,获得积分10
6秒前
韩soso完成签到,获得积分10
7秒前
迷人幻竹发布了新的文献求助30
7秒前
可爱芷容发布了新的文献求助10
7秒前
动听梨愁完成签到,获得积分10
8秒前
星辰大海应助bluesky采纳,获得10
9秒前
星辰大海应助盛夏蔚来采纳,获得10
9秒前
Embrace发布了新的文献求助10
9秒前
wdy111举报Ann求助涉嫌违规
10秒前
10秒前
dhts应助比巴卜采纳,获得10
11秒前
归尘发布了新的文献求助10
12秒前
12秒前
12秒前
脑洞疼应助Joe采纳,获得20
12秒前
14秒前
李雯完成签到,获得积分10
14秒前
上官若男应助kassidy采纳,获得10
15秒前
夕沫发布了新的文献求助10
15秒前
16秒前
16秒前
16秒前
ws发布了新的文献求助10
16秒前
17秒前
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987267
求助须知:如何正确求助?哪些是违规求助? 3529546
关于积分的说明 11245872
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804089
邀请新用户注册赠送积分活动 881339
科研通“疑难数据库(出版商)”最低求助积分说明 808653