Prototype-Based Semantic Segmentation

计算机科学 分割 Softmax函数 人工智能 像素 模式识别(心理学) 参数统计 非参数统计 人工神经网络 数学 统计
作者
Tianfei Zhou,Wenguan Wang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:46 (10): 6858-6872 被引量:26
标识
DOI:10.1109/tpami.2024.3387116
摘要

Deep learning based semantic segmentation solutions have yielded compelling results over the preceding decade. They encompass diverse network architectures (FCN based or attention based), along with various mask decoding schemes (parametric softmax based or pixel-query based). Despite the divergence, they can be grouped within a unified framework by interpreting the softmax weights or query vectors as learnable class prototypes. In light of this prototype view, we reveal inherent limitations within the parametric segmentation regime, and accordingly develop a nonparametric alternative based on non-learnable prototypes. In contrast to previous approaches that entail the learning of a single weight/query vector per class in a fully parametric manner, our approach represents each class as a set of non-learnable prototypes, relying solely upon the mean features of training pixels within that class. The pixel-wise prediction is thus achieved by nonparametric nearest prototype retrieving. This allows our model to directly shape the pixel embedding space by optimizing the arrangement between embedded pixels and anchored prototypes. It is able to accommodate an arbitrary number of classes with a constant number of learnable parameters. Through empirical evaluation with FCN based and Transformer based segmentation models (i.e., HRNet, Swin, SegFormer, Mask2Former) and backbones (i.e., ResNet, HRNet, Swin, MiT), our nonparametric framework shows superior performance on standard segmentation datasets (i.e., ADE20K, Cityscapes, COCO-Stuff), as well as in large-vocabulary semantic segmentation scenarios. We expect that this study will provoke a rethink of the current de facto semantic segmentation model design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助lilymozi采纳,获得10
刚刚
罗先斗完成签到,获得积分10
刚刚
刚刚
深情安青应助DAdump1ing采纳,获得10
刚刚
每天都要努力的小锅完成签到,获得积分10
刚刚
jie酱拌面应助现实的艳一采纳,获得10
1秒前
孙凯欣完成签到,获得积分10
2秒前
3秒前
rrjl发布了新的文献求助10
3秒前
青年才俊发布了新的文献求助10
3秒前
3秒前
共享精神应助超开心采纳,获得10
4秒前
4秒前
火星上香菇完成签到,获得积分10
4秒前
zhanjl13完成签到,获得积分10
4秒前
斯文孙完成签到,获得积分10
5秒前
5秒前
天天快乐应助坦率以莲采纳,获得10
5秒前
ZYN发布了新的文献求助10
5秒前
清禾关注了科研通微信公众号
6秒前
CC完成签到 ,获得积分10
6秒前
6秒前
7秒前
小二郎应助大天采纳,获得10
7秒前
8秒前
赘婿应助avalanche采纳,获得10
8秒前
义气季节发布了新的文献求助10
8秒前
研友完成签到,获得积分0
8秒前
SciEngineerX发布了新的文献求助10
8秒前
9秒前
xiaoke发布了新的文献求助10
9秒前
9秒前
紧张的紫文关注了科研通微信公众号
10秒前
赵绵绵关注了科研通微信公众号
10秒前
miss完成签到,获得积分10
10秒前
ASH完成签到 ,获得积分10
11秒前
11秒前
阎听筠完成签到,获得积分10
11秒前
zqr发布了新的文献求助10
12秒前
愉快的芒果完成签到,获得积分20
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5167443
求助须知:如何正确求助?哪些是违规求助? 4359422
关于积分的说明 13572960
捐赠科研通 4205794
什么是DOI,文献DOI怎么找? 2306607
邀请新用户注册赠送积分活动 1306223
关于科研通互助平台的介绍 1252822