Prototype-Based Semantic Segmentation

计算机科学 分割 Softmax函数 人工智能 像素 模式识别(心理学) 参数统计 非参数统计 人工神经网络 数学 统计
作者
Tianfei Zhou,Wenguan Wang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (10): 6858-6872 被引量:26
标识
DOI:10.1109/tpami.2024.3387116
摘要

Deep learning based semantic segmentation solutions have yielded compelling results over the preceding decade. They encompass diverse network architectures (FCN based or attention based), along with various mask decoding schemes (parametric softmax based or pixel-query based). Despite the divergence, they can be grouped within a unified framework by interpreting the softmax weights or query vectors as learnable class prototypes. In light of this prototype view, we reveal inherent limitations within the parametric segmentation regime, and accordingly develop a nonparametric alternative based on non-learnable prototypes. In contrast to previous approaches that entail the learning of a single weight/query vector per class in a fully parametric manner, our approach represents each class as a set of non-learnable prototypes, relying solely upon the mean features of training pixels within that class. The pixel-wise prediction is thus achieved by nonparametric nearest prototype retrieving. This allows our model to directly shape the pixel embedding space by optimizing the arrangement between embedded pixels and anchored prototypes. It is able to accommodate an arbitrary number of classes with a constant number of learnable parameters. Through empirical evaluation with FCN based and Transformer based segmentation models (i.e., HRNet, Swin, SegFormer, Mask2Former) and backbones (i.e., ResNet, HRNet, Swin, MiT), our nonparametric framework shows superior performance on standard segmentation datasets (i.e., ADE20K, Cityscapes, COCO-Stuff), as well as in large-vocabulary semantic segmentation scenarios. We expect that this study will provoke a rethink of the current de facto semantic segmentation model design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
热心市民余先生完成签到,获得积分10
1秒前
乐乐应助夕荀采纳,获得10
2秒前
无限小霜完成签到,获得积分10
2秒前
DreamMaker应助LV采纳,获得10
2秒前
星辰大海应助LV采纳,获得30
2秒前
2秒前
赘婿应助酥酥脆采纳,获得10
3秒前
哇塞爹发布了新的文献求助10
3秒前
打打应助扬子采纳,获得10
3秒前
cocobear完成签到 ,获得积分10
4秒前
Lucas应助Xide采纳,获得30
4秒前
4秒前
李佳楠完成签到,获得积分20
4秒前
ggp完成签到,获得积分0
4秒前
自行车v完成签到,获得积分10
4秒前
4秒前
hhhh完成签到 ,获得积分10
5秒前
早川木槿完成签到,获得积分10
5秒前
Kauio完成签到,获得积分10
6秒前
aaabbb发布了新的文献求助10
6秒前
研友_VZG7GZ应助Daisy采纳,获得10
6秒前
缥缈书本完成签到 ,获得积分10
6秒前
obto完成签到,获得积分20
6秒前
campus完成签到,获得积分10
6秒前
LT完成签到,获得积分10
7秒前
JamesPei应助粱乘风采纳,获得10
7秒前
夏竟添完成签到,获得积分10
7秒前
AA18236931952发布了新的文献求助10
7秒前
murmur完成签到,获得积分10
7秒前
李佳楠发布了新的文献求助10
7秒前
小包完成签到,获得积分10
8秒前
8秒前
哇哇哇完成签到 ,获得积分10
8秒前
寒冷茈完成签到,获得积分20
8秒前
WW完成签到,获得积分10
9秒前
满锅发布了新的文献求助10
9秒前
9秒前
阳阳语晗完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573926
求助须知:如何正确求助?哪些是违规求助? 4660203
关于积分的说明 14728382
捐赠科研通 4599980
什么是DOI,文献DOI怎么找? 2524638
邀请新用户注册赠送积分活动 1494989
关于科研通互助平台的介绍 1465005