已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prototype-Based Semantic Segmentation

计算机科学 分割 Softmax函数 人工智能 像素 模式识别(心理学) 参数统计 非参数统计 人工神经网络 数学 统计
作者
Tianfei Zhou,Wenguan Wang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (10): 6858-6872 被引量:53
标识
DOI:10.1109/tpami.2024.3387116
摘要

Deep learning based semantic segmentation solutions have yielded compelling results over the preceding decade. They encompass diverse network architectures (FCN based or attention based), along with various mask decoding schemes (parametric softmax based or pixel-query based). Despite the divergence, they can be grouped within a unified framework by interpreting the softmax weights or query vectors as learnable class prototypes. In light of this prototype view, we reveal inherent limitations within the parametric segmentation regime, and accordingly develop a nonparametric alternative based on non-learnable prototypes. In contrast to previous approaches that entail the learning of a single weight/query vector per class in a fully parametric manner, our approach represents each class as a set of non-learnable prototypes, relying solely upon the mean features of training pixels within that class. The pixel-wise prediction is thus achieved by nonparametric nearest prototype retrieving. This allows our model to directly shape the pixel embedding space by optimizing the arrangement between embedded pixels and anchored prototypes. It is able to accommodate an arbitrary number of classes with a constant number of learnable parameters. Through empirical evaluation with FCN based and Transformer based segmentation models (i.e., HRNet, Swin, SegFormer, Mask2Former) and backbones (i.e., ResNet, HRNet, Swin, MiT), our nonparametric framework shows superior performance on standard segmentation datasets (i.e., ADE20 K, Cityscapes, COCO-Stuff), as well as in large-vocabulary semantic segmentation scenarios. We expect that this study will provoke a rethink of the current de facto semantic segmentation model design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ttt发布了新的文献求助10
1秒前
赘婿应助重要母鸡采纳,获得10
1秒前
alxat完成签到,获得积分20
2秒前
小二郎应助泡泡啰叽采纳,获得10
2秒前
OvO_4577完成签到,获得积分10
2秒前
多情的如冰完成签到 ,获得积分10
4秒前
4秒前
auraro完成签到 ,获得积分10
4秒前
Glitter完成签到 ,获得积分10
5秒前
5秒前
8秒前
哈登完成签到 ,获得积分10
8秒前
joe完成签到 ,获得积分10
8秒前
9秒前
友好谷蓝发布了新的文献求助10
9秒前
9秒前
可可钳发布了新的文献求助10
10秒前
lkwat完成签到 ,获得积分10
12秒前
李健应助科研通管家采纳,获得10
13秒前
13秒前
科目三应助科研通管家采纳,获得10
13秒前
Tanya47应助科研通管家采纳,获得10
13秒前
romance发布了新的文献求助10
13秒前
英姑应助科研通管家采纳,获得10
13秒前
无花果应助科研通管家采纳,获得10
13秒前
思源应助科研通管家采纳,获得10
13秒前
Tanya47应助科研通管家采纳,获得10
13秒前
共享精神应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
Tanya47应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
充电宝应助科研通管家采纳,获得10
14秒前
慕青应助科研通管家采纳,获得10
14秒前
风行域完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
爆米花应助友好谷蓝采纳,获得10
16秒前
西吴完成签到 ,获得积分10
16秒前
焰古完成签到 ,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663937
求助须知:如何正确求助?哪些是违规求助? 4854696
关于积分的说明 15106497
捐赠科研通 4822285
什么是DOI,文献DOI怎么找? 2581341
邀请新用户注册赠送积分活动 1535521
关于科研通互助平台的介绍 1493759