Prototype-Based Semantic Segmentation

计算机科学 分割 Softmax函数 人工智能 像素 模式识别(心理学) 参数统计 非参数统计 人工神经网络 数学 统计
作者
Tianfei Zhou,Wenguan Wang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (10): 6858-6872 被引量:26
标识
DOI:10.1109/tpami.2024.3387116
摘要

Deep learning based semantic segmentation solutions have yielded compelling results over the preceding decade. They encompass diverse network architectures (FCN based or attention based), along with various mask decoding schemes (parametric softmax based or pixel-query based). Despite the divergence, they can be grouped within a unified framework by interpreting the softmax weights or query vectors as learnable class prototypes. In light of this prototype view, we reveal inherent limitations within the parametric segmentation regime, and accordingly develop a nonparametric alternative based on non-learnable prototypes. In contrast to previous approaches that entail the learning of a single weight/query vector per class in a fully parametric manner, our approach represents each class as a set of non-learnable prototypes, relying solely upon the mean features of training pixels within that class. The pixel-wise prediction is thus achieved by nonparametric nearest prototype retrieving. This allows our model to directly shape the pixel embedding space by optimizing the arrangement between embedded pixels and anchored prototypes. It is able to accommodate an arbitrary number of classes with a constant number of learnable parameters. Through empirical evaluation with FCN based and Transformer based segmentation models (i.e., HRNet, Swin, SegFormer, Mask2Former) and backbones (i.e., ResNet, HRNet, Swin, MiT), our nonparametric framework shows superior performance on standard segmentation datasets (i.e., ADE20K, Cityscapes, COCO-Stuff), as well as in large-vocabulary semantic segmentation scenarios. We expect that this study will provoke a rethink of the current de facto semantic segmentation model design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
故里发布了新的文献求助10
1秒前
JamesPei应助6666采纳,获得10
1秒前
wanci应助hc采纳,获得10
1秒前
木木完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
bkagyin应助Yanyes采纳,获得10
2秒前
momo19完成签到,获得积分10
3秒前
Eason完成签到 ,获得积分20
3秒前
ddd关闭了ddd文献求助
3秒前
3秒前
4秒前
JJJ发布了新的文献求助10
4秒前
落寞依玉发布了新的文献求助10
4秒前
4秒前
5秒前
李志强发布了新的文献求助10
5秒前
5秒前
abc97完成签到,获得积分10
6秒前
pepsisery完成签到,获得积分10
7秒前
7秒前
六月完成签到,获得积分10
7秒前
7秒前
传奇3应助陌路孤星采纳,获得10
7秒前
7秒前
8秒前
飞跃炼丹炉的沐沐完成签到,获得积分10
8秒前
Juni完成签到,获得积分10
8秒前
核桃应助kkk采纳,获得30
8秒前
9秒前
paperget发布了新的文献求助10
9秒前
单薄的芷蕾完成签到 ,获得积分10
9秒前
魔幻柜子完成签到 ,获得积分10
9秒前
高滢完成签到,获得积分10
10秒前
明亮越泽发布了新的文献求助10
10秒前
10秒前
ilovestudy发布了新的文献求助10
10秒前
anas发布了新的文献求助30
11秒前
pp完成签到 ,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5435804
求助须知:如何正确求助?哪些是违规求助? 4548006
关于积分的说明 14211638
捐赠科研通 4468203
什么是DOI,文献DOI怎么找? 2448968
邀请新用户注册赠送积分活动 1439889
关于科研通互助平台的介绍 1416503