Prototype-Based Semantic Segmentation

计算机科学 分割 Softmax函数 人工智能 像素 模式识别(心理学) 参数统计 非参数统计 人工神经网络 数学 统计
作者
Tianfei Zhou,Wenguan Wang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (10): 6858-6872 被引量:26
标识
DOI:10.1109/tpami.2024.3387116
摘要

Deep learning based semantic segmentation solutions have yielded compelling results over the preceding decade. They encompass diverse network architectures (FCN based or attention based), along with various mask decoding schemes (parametric softmax based or pixel-query based). Despite the divergence, they can be grouped within a unified framework by interpreting the softmax weights or query vectors as learnable class prototypes. In light of this prototype view, we reveal inherent limitations within the parametric segmentation regime, and accordingly develop a nonparametric alternative based on non-learnable prototypes. In contrast to previous approaches that entail the learning of a single weight/query vector per class in a fully parametric manner, our approach represents each class as a set of non-learnable prototypes, relying solely upon the mean features of training pixels within that class. The pixel-wise prediction is thus achieved by nonparametric nearest prototype retrieving. This allows our model to directly shape the pixel embedding space by optimizing the arrangement between embedded pixels and anchored prototypes. It is able to accommodate an arbitrary number of classes with a constant number of learnable parameters. Through empirical evaluation with FCN based and Transformer based segmentation models (i.e., HRNet, Swin, SegFormer, Mask2Former) and backbones (i.e., ResNet, HRNet, Swin, MiT), our nonparametric framework shows superior performance on standard segmentation datasets (i.e., ADE20K, Cityscapes, COCO-Stuff), as well as in large-vocabulary semantic segmentation scenarios. We expect that this study will provoke a rethink of the current de facto semantic segmentation model design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橙橙橙橙发布了新的文献求助10
刚刚
1秒前
星星完成签到,获得积分10
1秒前
田様应助zxzb采纳,获得10
2秒前
zsy发布了新的文献求助10
2秒前
852应助幽默厉采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
李键刚发布了新的文献求助10
4秒前
yibo完成签到,获得积分10
6秒前
9秒前
9秒前
9秒前
11秒前
搜集达人应助马凤仪采纳,获得10
11秒前
jianwu完成签到,获得积分10
12秒前
12秒前
slby完成签到 ,获得积分10
14秒前
百里烬言发布了新的文献求助20
14秒前
Gong发布了新的文献求助10
14秒前
小郭完成签到,获得积分20
14秒前
xiaoqi发布了新的文献求助10
15秒前
zxzb发布了新的文献求助10
15秒前
烟花应助小呆采纳,获得10
16秒前
wangxy发布了新的文献求助10
16秒前
17秒前
SciGPT应助阿狸贱贱采纳,获得10
17秒前
18秒前
浮游应助阳光易真采纳,获得10
19秒前
半山完成签到,获得积分10
20秒前
20秒前
20秒前
在水一方应助Gong采纳,获得10
21秒前
11完成签到,获得积分10
22秒前
m762发布了新的文献求助30
22秒前
Lin完成签到 ,获得积分10
22秒前
cg666发布了新的文献求助10
23秒前
23秒前
量子星尘发布了新的文献求助10
24秒前
思源应助王新宇采纳,获得10
24秒前
孙志英发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5490181
求助须知:如何正确求助?哪些是违规求助? 4588853
关于积分的说明 14421629
捐赠科研通 4520708
什么是DOI,文献DOI怎么找? 2476826
邀请新用户注册赠送积分活动 1462308
关于科研通互助平台的介绍 1435222