Prototype-Based Semantic Segmentation

计算机科学 分割 Softmax函数 人工智能 像素 模式识别(心理学) 参数统计 非参数统计 人工神经网络 数学 统计
作者
Tianfei Zhou,Wenguan Wang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (10): 6858-6872 被引量:53
标识
DOI:10.1109/tpami.2024.3387116
摘要

Deep learning based semantic segmentation solutions have yielded compelling results over the preceding decade. They encompass diverse network architectures (FCN based or attention based), along with various mask decoding schemes (parametric softmax based or pixel-query based). Despite the divergence, they can be grouped within a unified framework by interpreting the softmax weights or query vectors as learnable class prototypes. In light of this prototype view, we reveal inherent limitations within the parametric segmentation regime, and accordingly develop a nonparametric alternative based on non-learnable prototypes. In contrast to previous approaches that entail the learning of a single weight/query vector per class in a fully parametric manner, our approach represents each class as a set of non-learnable prototypes, relying solely upon the mean features of training pixels within that class. The pixel-wise prediction is thus achieved by nonparametric nearest prototype retrieving. This allows our model to directly shape the pixel embedding space by optimizing the arrangement between embedded pixels and anchored prototypes. It is able to accommodate an arbitrary number of classes with a constant number of learnable parameters. Through empirical evaluation with FCN based and Transformer based segmentation models (i.e., HRNet, Swin, SegFormer, Mask2Former) and backbones (i.e., ResNet, HRNet, Swin, MiT), our nonparametric framework shows superior performance on standard segmentation datasets (i.e., ADE20 K, Cityscapes, COCO-Stuff), as well as in large-vocabulary semantic segmentation scenarios. We expect that this study will provoke a rethink of the current de facto semantic segmentation model design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
duoduo发布了新的文献求助20
刚刚
unicorn完成签到,获得积分10
刚刚
LLM完成签到,获得积分10
1秒前
ss发布了新的文献求助10
1秒前
跳跃完成签到,获得积分10
1秒前
jksg发布了新的文献求助10
2秒前
打打应助熙可檬采纳,获得10
3秒前
3秒前
传奇3应助pure采纳,获得10
4秒前
彩色的曼柔完成签到 ,获得积分10
4秒前
enen发布了新的文献求助10
4秒前
魔幻的翠容完成签到 ,获得积分10
4秒前
4秒前
5秒前
5秒前
坦率的香烟完成签到,获得积分10
6秒前
6秒前
funkii完成签到,获得积分10
7秒前
领导范儿应助向北采纳,获得10
7秒前
jiaxingwei发布了新的文献求助10
7秒前
LHL完成签到,获得积分20
7秒前
8秒前
123发布了新的文献求助10
8秒前
9秒前
西貝发布了新的文献求助10
9秒前
CodeCraft应助朴实的南露采纳,获得10
9秒前
情怀应助xxaqs采纳,获得10
9秒前
李爱国应助nieziyun采纳,获得10
9秒前
领导范儿应助wuran采纳,获得10
9秒前
龙凌音完成签到,获得积分10
10秒前
10秒前
zhou完成签到,获得积分20
10秒前
11秒前
Raskye完成签到,获得积分10
11秒前
先生范发布了新的文献求助10
11秒前
MWSURE完成签到,获得积分10
11秒前
Ashley完成签到,获得积分10
11秒前
11秒前
LYSM发布了新的文献求助10
11秒前
大胆听莲完成签到 ,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629957
求助须知:如何正确求助?哪些是违规求助? 4721200
关于积分的说明 14971845
捐赠科研通 4787915
什么是DOI,文献DOI怎么找? 2556638
邀请新用户注册赠送积分活动 1517713
关于科研通互助平台的介绍 1478320