Prototype-Based Semantic Segmentation

计算机科学 分割 Softmax函数 人工智能 像素 模式识别(心理学) 参数统计 非参数统计 人工神经网络 数学 统计
作者
Tianfei Zhou,Wenguan Wang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (10): 6858-6872 被引量:5
标识
DOI:10.1109/tpami.2024.3387116
摘要

Deep learning based semantic segmentation solutions have yielded compelling results over the preceding decade. They encompass diverse network architectures (FCN based or attention based), along with various mask decoding schemes (parametric softmax based or pixel-query based). Despite the divergence, they can be grouped within a unified framework by interpreting the softmax weights or query vectors as learnable class prototypes. In light of this prototype view, we reveal inherent limitations within the parametric segmentation regime, and accordingly develop a nonparametric alternative based on non-learnable prototypes. In contrast to previous approaches that entail the learning of a single weight/query vector per class in a fully parametric manner, our approach represents each class as a set of non-learnable prototypes, relying solely upon the mean features of training pixels within that class. The pixel-wise prediction is thus achieved by nonparametric nearest prototype retrieving. This allows our model to directly shape the pixel embedding space by optimizing the arrangement between embedded pixels and anchored prototypes. It is able to accommodate an arbitrary number of classes with a constant number of learnable parameters. Through empirical evaluation with FCN based and Transformer based segmentation models (i.e., HRNet, Swin, SegFormer, Mask2Former) and backbones (i.e., ResNet, HRNet, Swin, MiT), our nonparametric framework shows superior performance on standard segmentation datasets (i.e., ADE20K, Cityscapes, COCO-Stuff), as well as in large-vocabulary semantic segmentation scenarios. We expect that this study will provoke a rethink of the current de facto semantic segmentation model design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Airy完成签到,获得积分10
刚刚
1秒前
1秒前
小蘑菇应助yuanjingnan采纳,获得10
1秒前
乌衣白马完成签到,获得积分10
1秒前
lifesci_ming完成签到,获得积分10
2秒前
2秒前
英姑应助陈一采纳,获得10
2秒前
3秒前
内向的行云完成签到 ,获得积分10
3秒前
迷路衫发布了新的文献求助10
5秒前
Lucas应助小胳膊细腿采纳,获得10
5秒前
晴晴发布了新的文献求助10
7秒前
FashionBoy应助暴龙战士图图采纳,获得10
8秒前
8秒前
9秒前
10秒前
10秒前
12秒前
yuanjingnan发布了新的文献求助10
14秒前
丘比特应助Dream点壹采纳,获得10
14秒前
15秒前
15秒前
夜阑听风雨完成签到,获得积分10
16秒前
今后应助天易采纳,获得10
16秒前
抽屉里的砖头完成签到,获得积分10
17秒前
希望天下0贩的0应助行7采纳,获得10
18秒前
18秒前
现实的日记本完成签到,获得积分10
18秒前
瓜子仁完成签到,获得积分10
19秒前
19秒前
20秒前
香蕉代灵发布了新的文献求助10
21秒前
晴晴完成签到,获得积分10
21秒前
ark861023发布了新的文献求助10
22秒前
JamesPei应助新玺采纳,获得10
22秒前
充电宝应助小沫采纳,获得10
22秒前
杭紫雪发布了新的文献求助10
23秒前
ly完成签到,获得积分10
23秒前
26秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143795
求助须知:如何正确求助?哪些是违规求助? 2795335
关于积分的说明 7814544
捐赠科研通 2451315
什么是DOI,文献DOI怎么找? 1304413
科研通“疑难数据库(出版商)”最低求助积分说明 627230
版权声明 601419