Prototype-Based Semantic Segmentation

计算机科学 分割 Softmax函数 人工智能 像素 模式识别(心理学) 参数统计 非参数统计 人工神经网络 数学 统计
作者
Tianfei Zhou,Wenguan Wang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (10): 6858-6872 被引量:26
标识
DOI:10.1109/tpami.2024.3387116
摘要

Deep learning based semantic segmentation solutions have yielded compelling results over the preceding decade. They encompass diverse network architectures (FCN based or attention based), along with various mask decoding schemes (parametric softmax based or pixel-query based). Despite the divergence, they can be grouped within a unified framework by interpreting the softmax weights or query vectors as learnable class prototypes. In light of this prototype view, we reveal inherent limitations within the parametric segmentation regime, and accordingly develop a nonparametric alternative based on non-learnable prototypes. In contrast to previous approaches that entail the learning of a single weight/query vector per class in a fully parametric manner, our approach represents each class as a set of non-learnable prototypes, relying solely upon the mean features of training pixels within that class. The pixel-wise prediction is thus achieved by nonparametric nearest prototype retrieving. This allows our model to directly shape the pixel embedding space by optimizing the arrangement between embedded pixels and anchored prototypes. It is able to accommodate an arbitrary number of classes with a constant number of learnable parameters. Through empirical evaluation with FCN based and Transformer based segmentation models (i.e., HRNet, Swin, SegFormer, Mask2Former) and backbones (i.e., ResNet, HRNet, Swin, MiT), our nonparametric framework shows superior performance on standard segmentation datasets (i.e., ADE20K, Cityscapes, COCO-Stuff), as well as in large-vocabulary semantic segmentation scenarios. We expect that this study will provoke a rethink of the current de facto semantic segmentation model design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助欢呼冷亦采纳,获得10
刚刚
研友_Z63G18完成签到 ,获得积分10
刚刚
玉米之路发布了新的文献求助10
刚刚
zhy完成签到,获得积分20
1秒前
2秒前
完美世界应助星星蘸大酱采纳,获得10
2秒前
Peng完成签到,获得积分10
2秒前
求助人员应助ali采纳,获得30
2秒前
李健的粉丝团团长应助GTY采纳,获得10
2秒前
2秒前
搞怪慕凝完成签到,获得积分10
2秒前
2秒前
爆米花应助mimosal采纳,获得10
3秒前
orixero应助wwk采纳,获得10
4秒前
4秒前
4秒前
5秒前
passion发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
核桃发布了新的文献求助10
6秒前
6秒前
zyw发布了新的文献求助10
7秒前
7秒前
sbdxlwyd完成签到 ,获得积分10
8秒前
8秒前
9秒前
10秒前
七慕凉应助大灯泡采纳,获得10
10秒前
Queena发布了新的文献求助10
10秒前
南陌故人发布了新的文献求助10
10秒前
科研通AI6应助years采纳,获得10
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
123Y发布了新的文献求助10
11秒前
zhangyk完成签到,获得积分10
11秒前
12秒前
仁爱冬瓜完成签到,获得积分10
12秒前
13秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615168
求助须知:如何正确求助?哪些是违规求助? 4700058
关于积分的说明 14906318
捐赠科研通 4741317
什么是DOI,文献DOI怎么找? 2547956
邀请新用户注册赠送积分活动 1511725
关于科研通互助平台的介绍 1473774