Prototype-Based Semantic Segmentation

计算机科学 分割 Softmax函数 人工智能 像素 模式识别(心理学) 参数统计 非参数统计 人工神经网络 数学 统计
作者
Tianfei Zhou,Wenguan Wang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (10): 6858-6872 被引量:26
标识
DOI:10.1109/tpami.2024.3387116
摘要

Deep learning based semantic segmentation solutions have yielded compelling results over the preceding decade. They encompass diverse network architectures (FCN based or attention based), along with various mask decoding schemes (parametric softmax based or pixel-query based). Despite the divergence, they can be grouped within a unified framework by interpreting the softmax weights or query vectors as learnable class prototypes. In light of this prototype view, we reveal inherent limitations within the parametric segmentation regime, and accordingly develop a nonparametric alternative based on non-learnable prototypes. In contrast to previous approaches that entail the learning of a single weight/query vector per class in a fully parametric manner, our approach represents each class as a set of non-learnable prototypes, relying solely upon the mean features of training pixels within that class. The pixel-wise prediction is thus achieved by nonparametric nearest prototype retrieving. This allows our model to directly shape the pixel embedding space by optimizing the arrangement between embedded pixels and anchored prototypes. It is able to accommodate an arbitrary number of classes with a constant number of learnable parameters. Through empirical evaluation with FCN based and Transformer based segmentation models (i.e., HRNet, Swin, SegFormer, Mask2Former) and backbones (i.e., ResNet, HRNet, Swin, MiT), our nonparametric framework shows superior performance on standard segmentation datasets (i.e., ADE20K, Cityscapes, COCO-Stuff), as well as in large-vocabulary semantic segmentation scenarios. We expect that this study will provoke a rethink of the current de facto semantic segmentation model design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情丸子发布了新的文献求助10
刚刚
1秒前
风趣绮烟发布了新的文献求助10
2秒前
Daodao发布了新的文献求助10
2秒前
6秒前
南京喵科大学完成签到,获得积分10
7秒前
丘比特应助简绮采纳,获得10
8秒前
厚朴应助蓝莓西西果冻采纳,获得10
9秒前
大模型应助风趣绮烟采纳,获得100
15秒前
jojo完成签到 ,获得积分10
17秒前
18秒前
俊逸的问薇完成签到 ,获得积分10
21秒前
27秒前
29秒前
独特的蛋挞完成签到,获得积分10
30秒前
学术laji发布了新的文献求助10
32秒前
简绮发布了新的文献求助10
35秒前
39秒前
青春完成签到,获得积分10
40秒前
大芳儿发布了新的文献求助10
40秒前
青春发布了新的文献求助10
43秒前
44秒前
44秒前
45秒前
RoboSAMA发布了新的文献求助20
49秒前
LXZ发布了新的文献求助10
50秒前
hoy发布了新的文献求助10
51秒前
卷卷完成签到 ,获得积分10
52秒前
zhonglv7应助小黑黑采纳,获得10
52秒前
脑洞疼应助东方越彬采纳,获得10
52秒前
Jodie发布了新的文献求助10
53秒前
浮游应助孙乐777采纳,获得10
58秒前
简绮完成签到 ,获得积分10
58秒前
58秒前
EMMA完成签到,获得积分10
59秒前
光亮雨完成签到 ,获得积分10
1分钟前
HuiYmao完成签到,获得积分20
1分钟前
1分钟前
goforit完成签到,获得积分0
1分钟前
HuiYmao发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557746
求助须知:如何正确求助?哪些是违规求助? 4642805
关于积分的说明 14669158
捐赠科研通 4584228
什么是DOI,文献DOI怎么找? 2514701
邀请新用户注册赠送积分活动 1488877
关于科研通互助平台的介绍 1459555