亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prototype-Based Semantic Segmentation

计算机科学 分割 Softmax函数 人工智能 像素 模式识别(心理学) 参数统计 非参数统计 人工神经网络 数学 统计
作者
Tianfei Zhou,Wenguan Wang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (10): 6858-6872 被引量:26
标识
DOI:10.1109/tpami.2024.3387116
摘要

Deep learning based semantic segmentation solutions have yielded compelling results over the preceding decade. They encompass diverse network architectures (FCN based or attention based), along with various mask decoding schemes (parametric softmax based or pixel-query based). Despite the divergence, they can be grouped within a unified framework by interpreting the softmax weights or query vectors as learnable class prototypes. In light of this prototype view, we reveal inherent limitations within the parametric segmentation regime, and accordingly develop a nonparametric alternative based on non-learnable prototypes. In contrast to previous approaches that entail the learning of a single weight/query vector per class in a fully parametric manner, our approach represents each class as a set of non-learnable prototypes, relying solely upon the mean features of training pixels within that class. The pixel-wise prediction is thus achieved by nonparametric nearest prototype retrieving. This allows our model to directly shape the pixel embedding space by optimizing the arrangement between embedded pixels and anchored prototypes. It is able to accommodate an arbitrary number of classes with a constant number of learnable parameters. Through empirical evaluation with FCN based and Transformer based segmentation models (i.e., HRNet, Swin, SegFormer, Mask2Former) and backbones (i.e., ResNet, HRNet, Swin, MiT), our nonparametric framework shows superior performance on standard segmentation datasets (i.e., ADE20K, Cityscapes, COCO-Stuff), as well as in large-vocabulary semantic segmentation scenarios. We expect that this study will provoke a rethink of the current de facto semantic segmentation model design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hx完成签到 ,获得积分10
3秒前
4秒前
17秒前
明芬发布了新的文献求助10
17秒前
臭小子发布了新的文献求助10
23秒前
臭小子完成签到,获得积分10
28秒前
blenx完成签到,获得积分10
45秒前
BowieHuang应助科研通管家采纳,获得10
46秒前
ceeray23应助科研通管家采纳,获得10
46秒前
我是老大应助科研通管家采纳,获得50
46秒前
TYM发布了新的文献求助30
52秒前
1分钟前
迷路千琴完成签到,获得积分10
1分钟前
Eeeeven完成签到 ,获得积分10
2分钟前
2分钟前
ceeray23应助科研通管家采纳,获得200
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
追梦远行人完成签到 ,获得积分10
2分钟前
Jay发布了新的文献求助30
3分钟前
TYM发布了新的文献求助10
3分钟前
Jay关闭了Jay文献求助
3分钟前
星辰大海应助TYM采纳,获得10
3分钟前
4分钟前
深情安青应助科研通管家采纳,获得10
4分钟前
科研通AI6应助明芬采纳,获得10
4分钟前
星辰大海应助谭代涛采纳,获得10
5分钟前
5分钟前
洛莉塔发布了新的文献求助10
5分钟前
洛莉塔完成签到,获得积分10
5分钟前
ding应助明芬采纳,获得10
5分钟前
mathmotive完成签到,获得积分10
5分钟前
5分钟前
6分钟前
谭代涛发布了新的文献求助10
6分钟前
英勇明雪完成签到 ,获得积分10
6分钟前
6分钟前
TYM发布了新的文献求助10
6分钟前
BowieHuang应助科研通管家采纳,获得10
6分钟前
李健应助科研通管家采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599798
求助须知:如何正确求助?哪些是违规求助? 4685540
关于积分的说明 14838598
捐赠科研通 4671325
什么是DOI,文献DOI怎么找? 2538288
邀请新用户注册赠送积分活动 1505547
关于科研通互助平台的介绍 1470945