Organic Anodes with Nearly 100% Initial Coulombic Efficiency Enabled by Wet‐Chemically Constructed Artificial Solid‐Electrolyte Interphase Film toward High‐Energy‐Density Organic Full Batteries

材料科学 法拉第效率 电解质 相间 阳极 能量密度 化学工程 纳米技术 电极 工程物理 物理化学 遗传学 生物 工程类 化学
作者
Zhongli Hu,Junjie Liu,Xiaolin Zhao,Xiao Zhan,Huiqun Wang,Huiping Yang,Jiedu Wu,Xiaoliang Fang,Qiaobao Zhang,Jianjun Liu,Li Zhang
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:34 (37) 被引量:5
标识
DOI:10.1002/adfm.202402199
摘要

Abstract Lithium‐ion batteries (LIBs) built on inorganic anodes have achieved great commercial success. By contrast, the practical application of organic anode materials encounters key bottlenecks including electronic insulation, high solubility, and poor initial coulombic efficiency (ICE). Among them, improving ICEs (normally 30–60%) faces enormous challenges in both theory and technology, and there has been no substantial breakthrough yet. Herein, a wet chemical pretreatment technology to increase the ICE of maleic acid (MA)‐based anodes from 43.2% to nearly 100% is proposed for the first time, and this strategy demonstrates universal applicability. Typically, the wet chemical pretreatment involves reacting with lithium‐biphenyl to form Li x MA intermediates (x = 4–6) and further forming a compact artificial solid‐electrolyte interphase (SEI) film through the spontaneous reaction between active Li x MA and battery organic electrolytes. This wet chemically‐constructed artificial SEI layer can almost completely suppress lithium loss in the initial cycle of the MA electrode and significantly boost the actual output energy density, rate capability, and cycling durability of MA anode‐based full batteries. Significantly, the study further demonstrated that a series of organic anode materials with high ICEs can be achieved through similar wet chemical pretreatment. This work will open up the true application of high‐ICE organic anodes in LIBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十元完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
2秒前
longlong发布了新的文献求助10
2秒前
充电宝应助PP采纳,获得10
2秒前
材料生发布了新的文献求助10
2秒前
3秒前
aaaaa完成签到,获得积分20
3秒前
十一玮应助宇哥12138采纳,获得10
3秒前
3秒前
英俊的铭应助Riley采纳,获得10
4秒前
4秒前
mlzhan发布了新的文献求助30
5秒前
李利利发布了新的文献求助10
6秒前
义气尔安发布了新的文献求助10
6秒前
CipherSage应助BisonHamster采纳,获得10
7秒前
8秒前
9秒前
9秒前
顾矜应助现代梦琪采纳,获得10
9秒前
乙醇发布了新的文献求助10
10秒前
Lucas应助高贵的迎蕾采纳,获得10
10秒前
10秒前
FashionBoy应助材料生采纳,获得10
13秒前
专一的冰露完成签到,获得积分10
13秒前
ding应助飞舞的青鱼采纳,获得10
13秒前
13秒前
吹又生完成签到,获得积分10
13秒前
LUMOS完成签到,获得积分10
14秒前
陈小桥发布了新的文献求助10
14秒前
14秒前
SciGPT应助小马采纳,获得10
14秒前
14秒前
小二郎应助大力采纳,获得10
15秒前
cdsd完成签到,获得积分10
15秒前
16秒前
17秒前
八岁发布了新的文献求助10
18秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470685
求助须知:如何正确求助?哪些是违规求助? 3063674
关于积分的说明 9084950
捐赠科研通 2754196
什么是DOI,文献DOI怎么找? 1511311
邀请新用户注册赠送积分活动 698363
科研通“疑难数据库(出版商)”最低求助积分说明 698253