Lattice-dependent activation of highly efficient SnTe cathode catalyst for Li–air batteries

材料科学 阴极 催化作用 格子(音乐) 化学工程 纳米技术 物理化学 有机化学 化学 物理 声学 工程类
作者
Xiuqi Zhang,Guoliang Zhang,Ruonan Yang,Dongmei Zhang,Gang Lian,Chuanxin Hou,Junna Ren,Hua Hou,Zhanhu Guo,Feng Dang
出处
期刊:Energy Storage Materials [Elsevier BV]
卷期号:69: 103392-103392 被引量:51
标识
DOI:10.1016/j.ensm.2024.103392
摘要

Lithium–air batteries (LABs) have attracted considerable interest in research in recent years owing to their ultrahigh energy density. However, almost all highly active cathode catalysts considered for them exhibit excellent performance only when operating in a pure O2 environment, because of which such batteries are classified as Li–O2 batteries (LOBs). Activating the capability of the cathodic catalyst in ambient air for LOBs is thus important. In this study, we use a lattice-dependent activation strategy to enhance the capability of the cathodic catalyst of LOBs in ambient air. It is demonstrated that the LABs performance of SnTe cathode catalyst applied in LOBs can be achieved through selected exposing crystal plane. The SnTe cathode with its (100) plane exposed exhibited a high specific capacity of over 9000 mAh g−1 and a long cycle performance of over 170 cycles at 500 mA g−1, about three times longer than that of the SnTe cathode with the (111) plane exposed. However, these two cathodes achieved similar cycle performance in the LOBs. The results of experimental and theoretical calculations revealed that the (111) plane of the catalyst yielded the best catalytic capability for the formation/decomposition of Li2O2, whereas the (100) plane could capture an adequate amount of oxygen while repelling CO2 and H2O. This enabled it to efficiently avoid the formation of side-products, such LiOH and Li2CO3, in ambient air and yield a high-performance LAB. This work provides practical design guidance for advanced catalysts assembled in LABs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今天鱼怎么样完成签到 ,获得积分10
2秒前
张立佳完成签到 ,获得积分10
4秒前
5秒前
5秒前
学术菜鸡123完成签到,获得积分10
6秒前
槿一完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
aircraft06完成签到,获得积分10
13秒前
qianci2009完成签到,获得积分0
13秒前
猫猫头完成签到 ,获得积分10
15秒前
苏苏完成签到 ,获得积分10
20秒前
22秒前
努力发芽的小黄豆完成签到 ,获得积分10
22秒前
23秒前
Hh完成签到,获得积分10
25秒前
天天开心完成签到 ,获得积分10
28秒前
量子星尘发布了新的文献求助10
29秒前
高兴的海白完成签到,获得积分10
32秒前
HH完成签到,获得积分10
33秒前
平凡世界完成签到 ,获得积分10
39秒前
Ezio_sunhao完成签到,获得积分10
39秒前
量子星尘发布了新的文献求助10
40秒前
阿坤完成签到 ,获得积分10
41秒前
林登万完成签到,获得积分10
43秒前
zoe完成签到 ,获得积分10
47秒前
49秒前
51秒前
喝酸奶不舔盖完成签到 ,获得积分0
51秒前
yusovegoistt发布了新的文献求助10
53秒前
溆玉碎兰笑完成签到 ,获得积分10
54秒前
鲍复天完成签到,获得积分10
56秒前
小小莫发布了新的文献求助10
56秒前
量子星尘发布了新的文献求助10
57秒前
英俊的铭应助yusovegoistt采纳,获得10
58秒前
advance完成签到,获得积分10
59秒前
雷晨晨完成签到 ,获得积分10
1分钟前
liufan完成签到 ,获得积分10
1分钟前
1分钟前
小小莫完成签到,获得积分10
1分钟前
清脆的大开完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4613016
求助须知:如何正确求助?哪些是违规求助? 4018011
关于积分的说明 12436990
捐赠科研通 3700338
什么是DOI,文献DOI怎么找? 2040716
邀请新用户注册赠送积分活动 1073470
科研通“疑难数据库(出版商)”最低求助积分说明 957104