Water Catchers within Sub‐Nano Channels Promote Step‐by‐Step Zinc‐Ion Dehydration Enable Highly Efficient Aqueous Zinc‐Metal Batteries

材料科学 水溶液 纳米- 金属 水溶液中的金属离子 脱水 化学工程 纳米技术 无机化学 离子 化学 冶金 有机化学 复合材料 工程类 生物化学
作者
Dongming Xu,Zhe Wang,Chengjun Liu,Haoyu Li,Feng Ouyang,Benqiang Chen,Weihang Li,Xueting Ren,Lishun Bai,Zhi Chang,Anqiang Pan,Haoshen Zhou
出处
期刊:Advanced Materials [Wiley]
卷期号:36 (26) 被引量:37
标识
DOI:10.1002/adma.202403765
摘要

Abstract Zinc metal suffers from violent and long‐lasting water‐induced side reactions and uncontrollable dendritic Zn growth, which seriously reduce the coulombic efficiency (CE) and lifespan of aqueous zinc‐metal batteries (AZMBs). To suppress the corresponding harmful effects of the highly active water, a stable zirconium‐based metal‐organic framework with water catchers decorated inside its sub‐nano channels is used to protect Zn‐metal. Water catchers within narrow channels can constantly trap water molecules from the solvated Zn‐ions and facilitate step‐by‐step desolvation/dehydration, thereby promoting the formation of an aggregative electrolyte configuration, which consequently eliminates water‐induced corrosion and side reactions. More importantly, the functionalized sub‐nano channels also act as ion rectifiers and promote fast but even Zn‐ions transport, thereby leading to a dendrite‐free Zn metal. As a result, the protected Zn metal demonstrates an unprecedented cycling stability of more than 10 000 h and an ultra‐high average CE of 99.92% during 4000 cycles. More inspiringly, a practical NH 4 V 4 O 10 //Zn pouch‐cell is fabricated and delivers a capacity of 98 mAh (under high cathode mass loading of 25.7 mg cm −2 ) and preserves 86.2% capacity retention after 150 cycles. This new strategy in promoting highly reversible Zn metal anodes would spur the practical utilization of AZMBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈哈哈发布了新的文献求助10
1秒前
sung发布了新的文献求助30
1秒前
1秒前
2秒前
mmmmm完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
蓝胖胖关注了科研通微信公众号
3秒前
鹤鸣完成签到,获得积分10
4秒前
Owen应助病毒遗传学采纳,获得10
4秒前
zoenghei发布了新的文献求助10
4秒前
4秒前
6秒前
wxd发布了新的文献求助10
6秒前
xu发布了新的文献求助10
6秒前
uu完成签到,获得积分20
6秒前
觅香发布了新的文献求助10
7秒前
某人发布了新的文献求助10
7秒前
7秒前
moji发布了新的文献求助10
8秒前
8秒前
8秒前
千寒发布了新的文献求助10
9秒前
Hello应助JREZZZ采纳,获得10
10秒前
香蕉觅云应助lonepl采纳,获得30
10秒前
Ava应助乐观保温杯采纳,获得10
12秒前
吕寻康关注了科研通微信公众号
12秒前
光亮寒凝发布了新的文献求助10
12秒前
浮游应助何况我是单身狗采纳,获得10
12秒前
小蘑菇应助htt采纳,获得10
13秒前
小橘子完成签到,获得积分10
14秒前
14秒前
ChenLS完成签到,获得积分10
14秒前
张曼玉发布了新的文献求助10
15秒前
16秒前
16秒前
123完成签到,获得积分10
16秒前
16秒前
千寒完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4991587
求助须知:如何正确求助?哪些是违规求助? 4239973
关于积分的说明 13208816
捐赠科研通 4034869
什么是DOI,文献DOI怎么找? 2207546
邀请新用户注册赠送积分活动 1218530
关于科研通互助平台的介绍 1136987