CoSKT: A Collaborative Self-supervised Learning Method for Knowledge Tracing

计算机科学 追踪 协作学习 人工智能 机器学习 人机交互 知识管理 操作系统
作者
Chunyun Zhang,Hebo Ma,Chaoran Cui,Yumo Yao,Weiran Xu,Yunfeng Zhang,Yuling Ma
出处
期刊:IEEE Transactions on Learning Technologies [Institute of Electrical and Electronics Engineers]
卷期号:17: 1502-1514
标识
DOI:10.1109/tlt.2024.3386750
摘要

Knowledge tracing (KT) aims to trace students' evolving knowledge states based on their learning sequences. Recently, some deep learning based models have been proposed to incorporate the historical information of individuals to trace students' knowledge states and achieve encouraging progress. However, these works ignore the collaborative information among those students who have similar exercise-answering experiences, which may contain some valuable information. In this paper, we present a novel collaborative self-supervised learning method for KT (CoSKT), which exploits both similar students' collaborative information and individual information to improve knowledge tracing. We firstly use the overlap rate of students' learning experiences to retrieve similar students. Based on similar students' exercise-answering sequences, we leverage attention mechanism to learn the representation of their common knowledge state and expected response to the target exercise. Then, we introduce self-supervised learning by encouraging the consistency between the common knowledge state and individual knowledge state. Finally, we integrate collaborative information and individual knowledge state with a gate mechanism to conduct the response prediction of the target exercise. We compare CoSKT with nine existing KT methods on three public datasets, and the results show that CoSKT achieves the state-of-the-art performance. The codes and models of CoSKT are available at https://github.com/lucky7-code/CoSKT .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助Mandy采纳,获得10
3秒前
3秒前
领导范儿应助小蓝采纳,获得10
6秒前
momo完成签到,获得积分10
7秒前
胡八一完成签到,获得积分10
9秒前
9秒前
10秒前
13秒前
15秒前
无心的复天完成签到,获得积分10
16秒前
Mandy发布了新的文献求助10
16秒前
16秒前
16秒前
九日完成签到,获得积分10
16秒前
十一发布了新的文献求助10
18秒前
小二郎应助JiaqiDijon采纳,获得10
21秒前
希望天下0贩的0应助Tracy采纳,获得10
21秒前
小幸运R完成签到 ,获得积分10
24秒前
28秒前
田乐天完成签到 ,获得积分10
31秒前
立军发布了新的文献求助10
31秒前
33秒前
SCL发布了新的文献求助10
34秒前
保佑我毕业完成签到 ,获得积分10
37秒前
可爱的函函应助czb采纳,获得10
38秒前
Tracy发布了新的文献求助10
39秒前
sss完成签到,获得积分10
40秒前
细心怜寒发布了新的文献求助10
41秒前
44秒前
虚幻玉米完成签到 ,获得积分10
45秒前
脑洞疼应助fyh8818采纳,获得10
47秒前
czb发布了新的文献求助10
48秒前
上官若男应助细心怜寒采纳,获得10
49秒前
53秒前
靓丽从筠完成签到,获得积分10
54秒前
57秒前
回来完成签到,获得积分10
57秒前
靓丽从筠发布了新的文献求助30
1分钟前
晨晨额呵呵完成签到,获得积分10
1分钟前
脑洞疼应助zmy采纳,获得30
1分钟前
高分求助中
Востребованный временем 2500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
The Higher Education System: Academic Organization in Cross-National Perspective 500
The Restraining Hand: Captivity for Christ in China 500
Encyclopedia of Mental Health Reference Work 400
Mercury and Silver Mining in the Colonial Atlantic 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3374491
求助须知:如何正确求助?哪些是违规求助? 2991300
关于积分的说明 8745025
捐赠科研通 2675160
什么是DOI,文献DOI怎么找? 1465484
科研通“疑难数据库(出版商)”最低求助积分说明 677850
邀请新用户注册赠送积分活动 669473