亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Systematic Approach for Creation of SOTIF’s Unknown Unsafe Scenarios: An Optimization based Method

计算机科学 风险分析(工程) 业务
作者
Tajinder Singh,Edwin van Hassel,Akshay Sheorey,Mohsen Alirezaei
出处
期刊:SAE technical paper series
标识
DOI:10.4271/2024-01-1966
摘要

<div class="section abstract"><div class="htmlview paragraph">Verification and validation (V&amp;V) of autonomous vehicles (AVs) is a challenging task. AVs must be thoroughly tested, to ensure their safe functionality in complex traffic situations including rare but safety-relevant events. Furthermore, AVs must mitigate risks and hazards that result from functional insufficiencies, as described in the Safety of the Intended Functionality (SOTIF) standard. SOTIF analysis includes iterative identification of driving scenarios that are not only unsafe, but also unknown. However, identifying SOTIF’s unknown-unsafe scenarios is an open challenge. In this paper we proposed a systematic optimization-based approach for identification of unknown-unsafe scenarios. The proposed approach consists of three main steps including data collection, feature extraction and optimization towards unknown unsafe scenarios. In the data collection step, we proposed an efficient way of data collection by focusing on key areas of the Operational Design Domain (ODD) (e.g., intersections). In step 2, the graph-based method is used to model the selected region(s) in the ODD. The generated graph is used to aggregate actor behaviors recorded during data collection in different parameter distributions (e.g. speeds or offset to center of the lane). In step 3, the generated graph for road layout and parameter distributions for actors are used in an optimization algorithm. The objective function for the optimization algorithm consists of a criticality metric, a proprietary KPI to identify unknown scenarios here called unexpectedness, multiplied by probability of scenario calculated from actor probability distributions. Using the objective function, the optimization algorithm can identify unknown-unsafe scenarios with highest probability for the selected region(s) in the ODD. The approach is implemented on an intersection and identified unknown-unsafe scenarios are reported in the paper.</div></div>

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
22秒前
46秒前
隐形曼青应助neversay4ever采纳,获得10
50秒前
胜天半子完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
囚徒发布了新的文献求助10
1分钟前
2分钟前
neversay4ever发布了新的文献求助10
2分钟前
2分钟前
2分钟前
万能图书馆应助neversay4ever采纳,获得10
2分钟前
2分钟前
小碗完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
邓娅琴完成签到 ,获得积分10
4分钟前
4分钟前
neversay4ever发布了新的文献求助10
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
CodeCraft应助科研通管家采纳,获得10
4分钟前
neversay4ever完成签到,获得积分10
4分钟前
4分钟前
5分钟前
zxq1996完成签到 ,获得积分10
5分钟前
小鸟芋圆露露完成签到 ,获得积分10
5分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
不想看文献完成签到 ,获得积分10
6分钟前
6分钟前
明明发布了新的文献求助200
6分钟前
嗯哼应助YOLO采纳,获得10
7分钟前
7分钟前
嗯哼应助Zoye采纳,获得30
8分钟前
嗯哼应助Zoye采纳,获得10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
8分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Generative AI in Higher Education 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3356868
求助须知:如何正确求助?哪些是违规求助? 2980468
关于积分的说明 8694464
捐赠科研通 2662169
什么是DOI,文献DOI怎么找? 1457611
科研通“疑难数据库(出版商)”最低求助积分说明 674843
邀请新用户注册赠送积分活动 665767