A Systematic Approach for Creation of SOTIF’s Unknown Unsafe Scenarios: An Optimization based Method

计算机科学 风险分析(工程) 业务
作者
Tajinder Singh,Edwin van Hassel,Akshay Sheorey,Mohsen Alirezaei
出处
期刊:SAE technical paper series 被引量:2
标识
DOI:10.4271/2024-01-1966
摘要

<div class="section abstract"><div class="htmlview paragraph">Verification and validation (V&amp;V) of autonomous vehicles (AVs) is a challenging task. AVs must be thoroughly tested, to ensure their safe functionality in complex traffic situations including rare but safety-relevant events. Furthermore, AVs must mitigate risks and hazards that result from functional insufficiencies, as described in the Safety of the Intended Functionality (SOTIF) standard. SOTIF analysis includes iterative identification of driving scenarios that are not only unsafe, but also unknown. However, identifying SOTIF’s unknown-unsafe scenarios is an open challenge. In this paper we proposed a systematic optimization-based approach for identification of unknown-unsafe scenarios. The proposed approach consists of three main steps including data collection, feature extraction and optimization towards unknown unsafe scenarios. In the data collection step, we proposed an efficient way of data collection by focusing on key areas of the Operational Design Domain (ODD) (e.g., intersections). In step 2, the graph-based method is used to model the selected region(s) in the ODD. The generated graph is used to aggregate actor behaviors recorded during data collection in different parameter distributions (e.g. speeds or offset to center of the lane). In step 3, the generated graph for road layout and parameter distributions for actors are used in an optimization algorithm. The objective function for the optimization algorithm consists of a criticality metric, a proprietary KPI to identify unknown scenarios here called unexpectedness, multiplied by probability of scenario calculated from actor probability distributions. Using the objective function, the optimization algorithm can identify unknown-unsafe scenarios with highest probability for the selected region(s) in the ODD. The approach is implemented on an intersection and identified unknown-unsafe scenarios are reported in the paper.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI2S应助aurora采纳,获得10
1秒前
1秒前
chun123完成签到,获得积分10
1秒前
灰色城市y完成签到,获得积分10
2秒前
2秒前
thy完成签到,获得积分10
3秒前
3秒前
yyyyyge完成签到,获得积分10
4秒前
4秒前
kyrie发布了新的文献求助10
5秒前
randomname完成签到,获得积分10
5秒前
satisusu发布了新的文献求助10
5秒前
大唐元完成签到,获得积分10
5秒前
蓝色床单发布了新的文献求助10
5秒前
彭于彦祖应助hhhh采纳,获得50
5秒前
雾眠气泡水完成签到,获得积分10
6秒前
6秒前
沙特完成签到,获得积分10
6秒前
美女完成签到,获得积分10
6秒前
君君完成签到,获得积分10
7秒前
Rondeau完成签到,获得积分10
7秒前
zzzzzzzp应助xzn1123采纳,获得10
8秒前
8秒前
8秒前
婷婷的大哥完成签到 ,获得积分10
10秒前
lincsh完成签到,获得积分20
13秒前
星辰大海应助外向的代荷采纳,获得10
13秒前
Master_Ye完成签到,获得积分10
13秒前
14秒前
姜夔发布了新的文献求助10
15秒前
64658应助小白科研采纳,获得10
15秒前
jucy发布了新的文献求助10
15秒前
俭朴的身影完成签到,获得积分10
15秒前
16秒前
18秒前
星辰大海应助爱吃粑粑采纳,获得10
19秒前
20秒前
20秒前
狂野飞柏完成签到 ,获得积分10
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969513
求助须知:如何正确求助?哪些是违规求助? 3514327
关于积分的说明 11173617
捐赠科研通 3249672
什么是DOI,文献DOI怎么找? 1794973
邀请新用户注册赠送积分活动 875537
科研通“疑难数据库(出版商)”最低求助积分说明 804836