Inferring molecular inhibition potency with AlphaFold predicted structures

效力 计算生物学 计算机科学 生物信息学 生物 遗传学 体外
作者
Pedro F. Oliveira,Rita C. Guedes,André O. Falcão
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-58394-z
摘要

Even though in silico drug ligand-based methods have been successful in predicting interactions with known target proteins, they struggle with new, unassessed targets. To address this challenge, we propose an approach that integrates structural data from AlphaFold 2 predicted protein structures into machine learning models. Our method extracts 3D structural protein fingerprints and combines them with ligand structural data to train a single machine learning model. This model captures the relationship between ligand properties and the unique structural features of various target proteins, enabling predictions for never before tested molecules and protein targets. To assess our model, we used a dataset of 144 Human G-protein Coupled Receptors (GPCRs) with over 140,000 measured inhibition constants (Ki) values. Results strongly suggest that our approach performs as well as state-of-the-art ligand-based methods. In a second modeling approach that used 129 targets for training and a separate test set of 15 different protein targets, our model correctly predicted interactions for 73% of targets, with explained variances exceeding 0.50 in 22% of cases. Our findings further verified that the usage of experimentally determined protein structures produced models that were statistically indistinct from the Alphafold synthetic structures. This study presents a proteo-chemometric drug screening approach that uses a simple and scalable method for extracting protein structural information for usage in machine learning models capable of predicting protein-molecule interactions even for orphan targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
tassssadar完成签到,获得积分10
2秒前
lalala关注了科研通微信公众号
3秒前
华仔应助海盗船长采纳,获得10
4秒前
4秒前
6秒前
科目三应助彳亍采纳,获得10
7秒前
7秒前
郝老头完成签到,获得积分10
7秒前
科研通AI5应助张凤采纳,获得10
7秒前
8秒前
huanhuan完成签到,获得积分10
9秒前
9秒前
传奇3应助ly采纳,获得10
10秒前
也许,发布了新的文献求助10
10秒前
10秒前
13秒前
渌水发布了新的文献求助10
14秒前
dzy1317完成签到,获得积分10
14秒前
imblml完成签到,获得积分10
15秒前
白宝宝北北白应助陈昇采纳,获得30
15秒前
16秒前
16秒前
桐桐应助杨阳洋采纳,获得10
16秒前
magic_sweets完成签到,获得积分10
17秒前
Dr.Xu发布了新的文献求助30
17秒前
科研通AI2S应助南南采纳,获得10
18秒前
呜哈哈发布了新的文献求助10
19秒前
ttxxcdx发布了新的文献求助10
20秒前
dreamboat完成签到,获得积分10
20秒前
20秒前
21秒前
高晗发布了新的文献求助10
21秒前
次天使之城完成签到,获得积分10
22秒前
22秒前
24秒前
ly发布了新的文献求助10
24秒前
Ava应助张凤采纳,获得10
25秒前
25秒前
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3574367
求助须知:如何正确求助?哪些是违规求助? 3144080
关于积分的说明 9455303
捐赠科研通 2845630
什么是DOI,文献DOI怎么找? 1564470
邀请新用户注册赠送积分活动 732281
科研通“疑难数据库(出版商)”最低求助积分说明 718991