Piezoelectric core-shell fibrous scaffolds of PVDF-ZnO/PCL for bone regeneration

材料科学 再生(生物学) 壳体(结构) 压电 复合材料 芯(光纤) 生物 细胞生物学
作者
Hasti Ghaedsharafi,Zahra Sherafat,Mahsa Sani,Negar Azarpira
出处
期刊:Materials Today Chemistry [Elsevier]
卷期号:37: 102017-102017 被引量:9
标识
DOI:10.1016/j.mtchem.2024.102017
摘要

One promising approach to improve bone regeneration is the use of piezoelectric scaffolds, which can positively affect cell growth and proliferation. PVDF, as a piezoelectric polymer, is an attractive candidate for use as a bone scaffold. However, other components should be added to PVDF to improve wettability, biodegradability, biocompatibility, and other biological properties. In this research, PVDF containing ZnO-PCL core-shell fiber composites were fabricated by coaxial electrospinning. TEM images were used to determine the proper electrospinning parameters that can provide a homogenous core/shell structure. Afterward, the surface of the samples was corona-treated to improve wettability. FTIR spectroscopy was used to estimate the piezoelectric β phase fraction in the core PVDF fibers, which demonstrated that the highest β phase fraction was obtained in the presence of 0.5 wt% ZnO nanoparticles. The tensile test results revealed that by adding ZnO nanoparticles to the scaffolds, the ultimate tensile strength of samples decreased, yet the values were in the acceptable range. The water contact angle measurements showed that the corona treatment could successfully reduce the contact angle from about 130° to 60°. Based on the obtained results, the F-0.5Z sample was chosen as the optimum sample and was used for biological and piezoelectric assessments. It rendered the piezoelectric output of 6.5 pC/N. In vitro assessments showed that this sample is biodegradable and bioactive, could support cell attachment and proliferation and intensified calcium mineralization. The composite containing 0.5 wt% ZnO had the best result and could be used as a scaffold in bone regeneration and repair.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lunlun完成签到,获得积分10
刚刚
爆米花应助与非采纳,获得10
刚刚
刚刚
whc121完成签到,获得积分10
1秒前
wxs完成签到,获得积分10
1秒前
汉堡包应助标致的冷梅采纳,获得10
1秒前
绿L完成签到,获得积分10
1秒前
脑洞疼应助遇见采纳,获得10
2秒前
喜悦小土豆完成签到,获得积分10
2秒前
今后应助独特的从露采纳,获得10
3秒前
3秒前
3秒前
3秒前
田様应助yfn采纳,获得10
3秒前
脑洞疼应助wtl采纳,获得10
3秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
所所应助沉潜采纳,获得10
4秒前
4秒前
故意的黄豆豆完成签到,获得积分10
5秒前
April完成签到 ,获得积分10
5秒前
可爱的函函应助黑胡椒采纳,获得30
5秒前
科研通AI6应助风轩轩采纳,获得10
6秒前
能干蜜蜂发布了新的文献求助10
6秒前
隐形曼青应助yr888采纳,获得10
7秒前
liu.lzy完成签到,获得积分10
7秒前
Honahlee发布了新的文献求助10
7秒前
jpc完成签到,获得积分10
7秒前
俊逸的无心完成签到,获得积分20
7秒前
7秒前
小青椒应助盷昀采纳,获得50
8秒前
8秒前
糜厉完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608407
求助须知:如何正确求助?哪些是违规求助? 4693040
关于积分的说明 14876313
捐赠科研通 4717445
什么是DOI,文献DOI怎么找? 2544206
邀请新用户注册赠送积分活动 1509230
关于科研通互助平台的介绍 1472836