Hard Regularization to Prevent Deep Online Clustering Collapse without Data Augmentation

聚类分析 正规化(语言学) 计算机科学 人工智能 数据科学
作者
Louis Mahon,Thomas Lukasiewicz
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (13): 14281-14288
标识
DOI:10.1609/aaai.v38i13.29340
摘要

Online deep clustering refers to the joint use of a feature extraction network and a clustering model to assign cluster labels to each new data point or batch as it is processed. While faster and more versatile than offline methods, online clustering can easily reach the collapsed solution where the encoder maps all inputs to the same point and all are put into a single cluster. Successful existing models have employed various techniques to avoid this problem, most of which require data augmentation or which aim to make the average soft assignment across the dataset the same for each cluster. We propose a method that does not require data augmentation, and that, differently from existing methods, regularizes the hard assignments. Using a Bayesian framework, we derive an intuitive optimization objective that can be straightforwardly included in the training of the encoder network. Tested on four image datasets, it consistently avoids collapse more robustly than other methods and leads to more accurate clustering. We also conduct further experiments and analyses justifying our choice to regularize the hard cluster assignments. Code is available at https://github.com/Lou1sM/online_hard_clustering.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
c7发布了新的文献求助10
刚刚
1秒前
2499297293完成签到,获得积分10
1秒前
tom完成签到,获得积分10
1秒前
1秒前
Timon发布了新的文献求助10
2秒前
SciGPT应助YuLu采纳,获得10
2秒前
njebcuiebvjc发布了新的文献求助10
3秒前
内向书南发布了新的文献求助10
3秒前
yema发布了新的文献求助10
3秒前
Akim应助文献求助采纳,获得10
3秒前
腼腆的安雁完成签到,获得积分10
4秒前
Han发布了新的文献求助10
4秒前
5秒前
6秒前
6秒前
杜甫发布了新的文献求助10
7秒前
orixero应助刘浩然采纳,获得10
7秒前
鲨鱼辣椒吼吼哈完成签到,获得积分10
7秒前
8秒前
AA1完成签到,获得积分20
8秒前
9秒前
积极的雁玉发布了新的文献求助200
10秒前
10秒前
11秒前
11秒前
积极的邴发布了新的文献求助10
12秒前
12秒前
无花果应助望空采纳,获得10
12秒前
13秒前
njebcuiebvjc完成签到,获得积分20
13秒前
李晓玲发布了新的文献求助10
14秒前
14秒前
流星噬月发布了新的文献求助10
14秒前
叶知秋发布了新的文献求助10
14秒前
15秒前
15秒前
孤独如曼完成签到,获得积分10
15秒前
Owen应助至浩采纳,获得10
16秒前
zzzhhh发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589658
求助须知:如何正确求助?哪些是违规求助? 4674292
关于积分的说明 14792969
捐赠科研通 4628917
什么是DOI,文献DOI怎么找? 2532363
邀请新用户注册赠送积分活动 1501031
关于科研通互助平台的介绍 1468487