Hard Regularization to Prevent Deep Online Clustering Collapse without Data Augmentation

聚类分析 正规化(语言学) 计算机科学 人工智能 数据科学
作者
Louis Mahon,Thomas Lukasiewicz
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (13): 14281-14288
标识
DOI:10.1609/aaai.v38i13.29340
摘要

Online deep clustering refers to the joint use of a feature extraction network and a clustering model to assign cluster labels to each new data point or batch as it is processed. While faster and more versatile than offline methods, online clustering can easily reach the collapsed solution where the encoder maps all inputs to the same point and all are put into a single cluster. Successful existing models have employed various techniques to avoid this problem, most of which require data augmentation or which aim to make the average soft assignment across the dataset the same for each cluster. We propose a method that does not require data augmentation, and that, differently from existing methods, regularizes the hard assignments. Using a Bayesian framework, we derive an intuitive optimization objective that can be straightforwardly included in the training of the encoder network. Tested on four image datasets, it consistently avoids collapse more robustly than other methods and leads to more accurate clustering. We also conduct further experiments and analyses justifying our choice to regularize the hard cluster assignments. Code is available at https://github.com/Lou1sM/online_hard_clustering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Silieze完成签到,获得积分10
刚刚
哆啦A涵发布了新的文献求助10
1秒前
222发布了新的文献求助10
1秒前
2秒前
科研通AI6应助jyyg采纳,获得30
2秒前
桥桥发布了新的文献求助10
2秒前
小二郎应助zjl采纳,获得10
2秒前
浮游应助skyer1采纳,获得10
3秒前
3秒前
可爱的函函应助tuzi采纳,获得50
5秒前
领导范儿应助十一号采纳,获得10
5秒前
丹寒完成签到,获得积分10
5秒前
5秒前
顾矜应助HYF采纳,获得10
6秒前
咪咪摸摸发布了新的文献求助10
6秒前
chen发布了新的文献求助10
7秒前
优秀发布了新的文献求助20
7秒前
Murphy_H完成签到,获得积分10
7秒前
小解完成签到 ,获得积分10
7秒前
李爱国应助asd_1采纳,获得10
7秒前
8秒前
9秒前
Jerry发布了新的文献求助20
9秒前
11秒前
13秒前
13秒前
simple1完成签到 ,获得积分10
13秒前
万能图书馆应助chen采纳,获得10
13秒前
李君然发布了新的文献求助10
14秒前
14秒前
14秒前
碧蓝安露完成签到,获得积分10
15秒前
Fudongxue完成签到,获得积分10
16秒前
Maestro_S应助jyyg采纳,获得10
16秒前
NIUBEN发布了新的文献求助10
16秒前
Grinder发布了新的文献求助10
17秒前
17秒前
桃桃发布了新的文献求助10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600144
求助须知:如何正确求助?哪些是违规求助? 4010398
关于积分的说明 12416277
捐赠科研通 3690163
什么是DOI,文献DOI怎么找? 2034179
邀请新用户注册赠送积分活动 1067543
科研通“疑难数据库(出版商)”最低求助积分说明 952426