缩小尺度
分位数回归
分位数
降水
回归
计算机科学
算法
集成学习
人工智能
机器学习
环境科学
统计
数学
气象学
地理
作者
Thomas Bailie,Yun Sing Koh,Neelesh Rampal,Peter B. Gibson
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence
[Association for the Advancement of Artificial Intelligence (AAAI)]
日期:2024-03-24
卷期号:38 (20): 21914-21922
被引量:2
标识
DOI:10.1609/aaai.v38i20.30193
摘要
Global Climate Models (GCMs) simulate low resolution climate projections on a global scale. The native resolution of GCMs is generally too low for societal-level decision-making. To enhance the spatial resolution, downscaling is often applied to GCM output. Statistical downscaling techniques, in particular, are well-established as a cost-effective approach. They require significantly less computational time than physics-based dynamical downscaling. In recent years, deep learning has gained prominence in statistical downscaling, demonstrating significantly lower error rates compared to traditional statistical methods. However, a drawback of regression-based deep learning techniques is their tendency to overfit to the mean sample intensity. Extreme values as a result are often underestimated. Problematically, extreme events have the largest societal impact. We propose Quantile-Regression-Ensemble (QRE), an innovative deep learning algorithm inspired by boosting methods. Its primary objective is to avoid trade-offs between fitting to sample means and extreme values by training independent models on a partitioned dataset. Our QRE is robust to redundant models and not susceptible to explosive ensemble weights, ensuring a reliable training process. QRE achieves lower Mean Squared Error (MSE) compared to various baseline models. In particular, our algorithm has a lower error for high-intensity precipitation events over New Zealand, highlighting the ability to represent extreme events accurately.
科研通智能强力驱动
Strongly Powered by AbleSci AI