Quantile-Regression-Ensemble: A Deep Learning Algorithm for Downscaling Extreme Precipitation

缩小尺度 分位数回归 分位数 降水 回归 计算机科学 算法 集成学习 人工智能 机器学习 环境科学 统计 数学 气象学 地理
作者
Thomas Bailie,Yun Sing Koh,Neelesh Rampal,Peter B. Gibson
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (20): 21914-21922 被引量:2
标识
DOI:10.1609/aaai.v38i20.30193
摘要

Global Climate Models (GCMs) simulate low resolution climate projections on a global scale. The native resolution of GCMs is generally too low for societal-level decision-making. To enhance the spatial resolution, downscaling is often applied to GCM output. Statistical downscaling techniques, in particular, are well-established as a cost-effective approach. They require significantly less computational time than physics-based dynamical downscaling. In recent years, deep learning has gained prominence in statistical downscaling, demonstrating significantly lower error rates compared to traditional statistical methods. However, a drawback of regression-based deep learning techniques is their tendency to overfit to the mean sample intensity. Extreme values as a result are often underestimated. Problematically, extreme events have the largest societal impact. We propose Quantile-Regression-Ensemble (QRE), an innovative deep learning algorithm inspired by boosting methods. Its primary objective is to avoid trade-offs between fitting to sample means and extreme values by training independent models on a partitioned dataset. Our QRE is robust to redundant models and not susceptible to explosive ensemble weights, ensuring a reliable training process. QRE achieves lower Mean Squared Error (MSE) compared to various baseline models. In particular, our algorithm has a lower error for high-intensity precipitation events over New Zealand, highlighting the ability to represent extreme events accurately.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Guts完成签到,获得积分10
刚刚
可可完成签到,获得积分10
刚刚
若尘完成签到,获得积分10
刚刚
legend完成签到,获得积分10
1秒前
踏实的大地完成签到,获得积分10
1秒前
DijiaXu应助sunyanghu369采纳,获得10
1秒前
pangpang发布了新的文献求助10
1秒前
Chandler完成签到,获得积分10
2秒前
Cat完成签到,获得积分0
2秒前
2秒前
2秒前
2秒前
大闲鱼铭一完成签到 ,获得积分10
3秒前
zhonghebi应助Jane_2022采纳,获得10
3秒前
pluto应助科研通管家采纳,获得10
3秒前
Guts发布了新的文献求助10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
桃桃完成签到,获得积分10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
drtianyunhong完成签到,获得积分10
3秒前
3秒前
3秒前
桐桐应助科研通管家采纳,获得10
4秒前
pluto应助科研通管家采纳,获得10
4秒前
young应助科研通管家采纳,获得10
4秒前
CR7应助科研通管家采纳,获得20
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
打打应助科研通管家采纳,获得10
4秒前
ding应助科研通管家采纳,获得10
4秒前
Notdodead完成签到,获得积分10
4秒前
Emanuel完成签到,获得积分10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
LX完成签到,获得积分10
4秒前
桐桐应助科研通管家采纳,获得30
4秒前
打打应助科研通管家采纳,获得10
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
5秒前
5秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016130
求助须知:如何正确求助?哪些是违规求助? 3556145
关于积分的说明 11320169
捐赠科研通 3289087
什么是DOI,文献DOI怎么找? 1812382
邀请新用户注册赠送积分活动 887923
科研通“疑难数据库(出版商)”最低求助积分说明 812051