Quantile-Regression-Ensemble: A Deep Learning Algorithm for Downscaling Extreme Precipitation

缩小尺度 分位数回归 分位数 降水 回归 计算机科学 算法 集成学习 人工智能 机器学习 环境科学 统计 数学 气象学 地理
作者
Thomas Bailie,Yun Sing Koh,Neelesh Rampal,Peter B. Gibson
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (20): 21914-21922 被引量:2
标识
DOI:10.1609/aaai.v38i20.30193
摘要

Global Climate Models (GCMs) simulate low resolution climate projections on a global scale. The native resolution of GCMs is generally too low for societal-level decision-making. To enhance the spatial resolution, downscaling is often applied to GCM output. Statistical downscaling techniques, in particular, are well-established as a cost-effective approach. They require significantly less computational time than physics-based dynamical downscaling. In recent years, deep learning has gained prominence in statistical downscaling, demonstrating significantly lower error rates compared to traditional statistical methods. However, a drawback of regression-based deep learning techniques is their tendency to overfit to the mean sample intensity. Extreme values as a result are often underestimated. Problematically, extreme events have the largest societal impact. We propose Quantile-Regression-Ensemble (QRE), an innovative deep learning algorithm inspired by boosting methods. Its primary objective is to avoid trade-offs between fitting to sample means and extreme values by training independent models on a partitioned dataset. Our QRE is robust to redundant models and not susceptible to explosive ensemble weights, ensuring a reliable training process. QRE achieves lower Mean Squared Error (MSE) compared to various baseline models. In particular, our algorithm has a lower error for high-intensity precipitation events over New Zealand, highlighting the ability to represent extreme events accurately.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
在水一方应助zxd采纳,获得10
1秒前
flora完成签到 ,获得积分10
2秒前
3秒前
自觉的书蝶完成签到,获得积分10
3秒前
3秒前
上官若男应助七木采纳,获得10
3秒前
一条纤维化的鱼完成签到,获得积分10
3秒前
Hont发布了新的文献求助10
4秒前
4秒前
ste发布了新的文献求助10
4秒前
赘婿应助tata1945采纳,获得10
4秒前
4秒前
4秒前
5秒前
5秒前
5秒前
Yuan发布了新的文献求助10
6秒前
科研通AI6.1应助郭甜甜采纳,获得10
6秒前
6秒前
共享精神应助Murphy采纳,获得20
6秒前
6秒前
希望天下0贩的0应助yicheng采纳,获得10
7秒前
orixero应助玉米采纳,获得10
7秒前
愉快彩虹完成签到,获得积分10
7秒前
7秒前
子木发布了新的文献求助10
7秒前
phil发布了新的文献求助10
8秒前
8秒前
闪电鼠完成签到,获得积分10
9秒前
9秒前
9秒前
田様应助积极的超短裙采纳,获得10
9秒前
9秒前
达菲发布了新的文献求助10
9秒前
tuyfytjt发布了新的文献求助10
9秒前
小米糕发布了新的文献求助10
10秒前
XCI完成签到,获得积分20
10秒前
www发布了新的文献求助10
10秒前
田田田田完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784729
求助须知:如何正确求助?哪些是违规求助? 5683637
关于积分的说明 15465264
捐赠科研通 4913778
什么是DOI,文献DOI怎么找? 2644903
邀请新用户注册赠送积分活动 1592835
关于科研通互助平台的介绍 1547216