化学
蔗糖
低温保护剂
食品科学
咀嚼度
山梨醇
甜蜜
色谱法
糖
低温保存
生物
细胞生物学
胚胎
作者
Naiyong Xiao,Zhihang Tian,Qiang Zhang,Huiya Xu,Yantao Yin,Shucheng Liu,Wenzheng Shi
摘要
Abstract BACKGROUND The present study aimed to investigate the cryoprotective effect of epigallocatechin gallate (EGCG) replacing sucrose on surimi during frozen storage. Substitution or partial substitution of 0.1% EGCG for sucrose (1.5%) was added to surimi, and the surimi samples without and with commercial cryoprotectants (4% sucrose and 4% sorbitol) were used as the control group. RESULTS The results obtained suggest that, with the increase in frozen storage time, the structural performance of surimi protein gradually weakened (e.g. the decrease in the surface hydrophobicity, the increase in the total sulfhydryl and solubility, and the protein myosin heavy chain bands became shallow) and surimi gel quality gradually deteriorated (e.g. the decrease in water‐holding capacity, gel strength and all texture profile attributes). However, compared with the other three group surimi samples during the frozen period, the surimi proteins with partial replacement of sucrose by EGCG had a higher total sulfhydryl group content and solubility of proteins, as well as lower surface hydrophobicity of protein, suggesting that the addition of EGCG as a partial substitute for sucrose can enhance the antifreeze ability of surimi. Meanwhile, the surimi gel with the partial replacement of sucrose by EGCG had a higher water retention capacity, gel strength and texture attributes (e.g. hardness, springiness, cohesiveness, chewiness, and resilience), indicating that the addition of EGCG as a partial substitute for sucrose can inhibit the deterioration of surimi gel quality. CONCLUSION Overall, EGCG partially replacing sucrose can play an alternative cryoprotectant with a lower sweetness to prevent the quality of surimi from deteriorating. © 2024 Society of Chemical Industry.
科研通智能强力驱动
Strongly Powered by AbleSci AI