同核分子
异核分子
催化作用
化学
化学物理
Atom(片上系统)
过渡金属
计算化学
分子
有机化学
计算机科学
嵌入式系统
作者
Yue‐Fei Zhang,Yang Yu,Yu Zhang,Xuefei Liu,Wenjun Xiao,Degui Wang,Gang Wang,Zhen Wang,Jinshun Bi,Jincheng Liu,Xun Zhou,Wentao Wang
出处
期刊:Authorea - Authorea
日期:2024-04-23
被引量:1
标识
DOI:10.22541/au.171385805.50791156/v1
摘要
A heteronuclear dual transition metal atom catalyst is a promising strategy to solve and relieve the increasing energy and environment crisis. However, the role of each atom still does not efficiently differentiate due to the high activity but low detectivity of each transition metal in the synergistic catalytic process when considering the influence of heteronuclear induced atomic difference for each transition metal atom, thus seriously hindering intrinsic mechanism finding. Herein, we proposed coordinate environment vary induced heterogenization of homonuclear dual transition metal, which inherits the advantage of heteronuclear transition metal atom catalyst but also controls the variable of the two atoms to explore the underlying mechanism. Based on this proposal, employing density functional theory study and machine learning, 23 kinds of homonuclear transition metals are doping in four asymmetric C3N for heterogenization to evaluate the underlying catalytic mechanism. Our results demonstrate that five catalysts exhibit excellent catalytic performance with a low limiting potential of -0.28 to -0.48 V. In the meantime, a new mechanism, ‘capture-charge distribution-recapture-charge redistribution’, is developed for both side-on and end-on configuration. More importantly, the pronate site of the first hydrogenation is identified based on this mechanism. Our work not only initially makes a deep understanding of the transition dual metal-based heteronuclear catalyst indirectly but also broadens the development of complicated homonuclear dual atom catalysts in the future.
科研通智能强力驱动
Strongly Powered by AbleSci AI