石墨烯
拉曼光谱
材料科学
分子
罗丹明6G
费米能级
密度泛函理论
纳米技术
拉曼散射
化学物理
化学
物理
计算化学
电子
光学
量子力学
作者
Na Zhang,Kunyan Zhang,Min Zou,Rinu Abraham Maniyara,Timothy Bowen,Jonathon R. Schrecengost,Arpit Jain,Da Zhou,Chengye Dong,Zhuohang Yu,He Liu,Noel C. Giebink,Joshua A. Robinson,Wei Hu,Shengxi Huang,Mauricio Terrones
出处
期刊:ACS Nano
[American Chemical Society]
日期:2024-03-18
卷期号:18 (12): 8876-8884
被引量:4
标识
DOI:10.1021/acsnano.3c12152
摘要
Graphene-enhanced Raman scattering (GERS) offers great opportunities to achieve optical sensing with a high uniformity and superior molecular selectivity. The GERS mechanism relies on charge transfer between molecules and graphene, which is difficult to manipulate by varying the band alignment between graphene and the molecules. In this work, we synthesized a few atomic layers of metal termed two-dimensional (2D) metal to precisely and deterministically modify the graphene Fermi level. Using copper phthalocyanine (CuPc) as a representative molecule, we demonstrated that tuning the Fermi level can significantly improve the signal enhancement and molecular selectivity of GERS. Specifically, aligning the Fermi level of graphene closer to the highest occupied molecular orbital (HOMO) of CuPc results in a more pronounced Raman enhancement. Density functional theory (DFT) calculations of the charge density distribution reproduce the enhanced charge transfer between CuPc molecules and graphene with a modulated Fermi level. Extending our investigation to other molecules such as rhodamine 6G, rhodamine B, crystal violet, and F16CuPc, we showed that 2D metals enabled Fermi level tuning, thus improving GERS detection for molecules and contributing to an enhanced molecular selectivity. This underscores the potential of utilizing 2D metals for the precise control and optimization of GERS applications, which will benefit the development of highly sensitive, specific, and reliable sensors.
科研通智能强力驱动
Strongly Powered by AbleSci AI