Intrusion Detection in IoT Network Using Few-Shot Class Incremental Learning

弹丸 入侵检测系统 计算机科学 物联网 班级(哲学) 入侵 人工智能 实时计算 计算机安全 地质学 材料科学 地球化学 冶金
作者
Mostafa Hosseini,Wei Shi
出处
期刊:Lecture notes in networks and systems 卷期号:: 617-636 被引量:1
标识
DOI:10.1007/978-3-031-54053-0_41
摘要

The Internet of Things (IoT) is one of the most rapidly evolving technologies, impacting various industrial sectors. With its immense potential, IoT comes with crucial security concerns, and we face high-volume and diverse attacks that must be addressed in short periods, emphasizing the importance of utilizing intrusion detection solutions in IoT networks. In the initial stage of an intrusion detection system, when sufficient samples are available from the known attack classes, classic network intrusion detection methods can deliver good performance. However, the learned knowledge is no longer suitable for new types of attacks with just a few samples. On the other hand, due to the limited computing ability of edge devices in distributed IoT, only a small scale of data can be used for model training. Therefore, designing a lightweight learning scheme targeting small-scale training data is essential to train or update the model more effectively in resource-constrained devices. We propose a novel model based on Few-Shot Class Incremental Learning (FSCIL) for network intrusion detection in IoT networks. This model has been used in incremental image classification tasks. To the best of our knowledge, this is the first time that this model has been used in network intrusion detection for multi-class classification. We compare the proposed method with some state-of-the-art methods, and experimental analysis shows that our model outperforms others.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奶昔发布了新的文献求助10
2秒前
orixero应助有只长脖鹿采纳,获得10
2秒前
天真彩虹完成签到 ,获得积分10
3秒前
4秒前
Mars_1108发布了新的文献求助10
7秒前
jiabu完成签到 ,获得积分10
7秒前
seine完成签到 ,获得积分10
10秒前
xuzj应助墨菲特采纳,获得10
10秒前
Akim应助Jing采纳,获得10
10秒前
陳拾壹发布了新的文献求助10
16秒前
烟花应助渡川采纳,获得10
16秒前
19秒前
空城完成签到 ,获得积分10
20秒前
小毛毛想睡觉完成签到 ,获得积分10
20秒前
genandtal完成签到,获得积分10
20秒前
可爱的小桃完成签到,获得积分10
24秒前
Jing发布了新的文献求助10
24秒前
烟花应助Jemma采纳,获得10
24秒前
Jing完成签到,获得积分10
30秒前
思源应助lili采纳,获得10
30秒前
科目三应助春花采纳,获得10
31秒前
Orange应助Persist采纳,获得10
34秒前
36秒前
iNk应助科研通管家采纳,获得20
36秒前
iNk应助科研通管家采纳,获得20
36秒前
香蕉觅云应助科研通管家采纳,获得10
36秒前
36秒前
深情安青应助科研通管家采纳,获得10
36秒前
半圭为璋完成签到,获得积分10
37秒前
37秒前
FashionBoy应助科研通管家采纳,获得10
37秒前
37秒前
37秒前
37秒前
小夜完成签到,获得积分10
37秒前
脑洞疼应助PigaChu采纳,获得10
37秒前
神经娃完成签到,获得积分10
39秒前
公孙世往发布了新的文献求助10
40秒前
体贴花卷发布了新的文献求助10
41秒前
41秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976418
求助须知:如何正确求助?哪些是违规求助? 3520512
关于积分的说明 11203586
捐赠科研通 3257127
什么是DOI,文献DOI怎么找? 1798594
邀请新用户注册赠送积分活动 877804
科研通“疑难数据库(出版商)”最低求助积分说明 806523