Evidence-based potential of generative artificial intelligence large language models in orthodontics: a comparative study of ChatGPT, Google Bard, and Microsoft Bing

印为红字的 Microsoft excel 计算机科学 清晰 人工智能 统计 机器学习 自然语言处理 心理学 数学 数学教育 生物化学 操作系统 化学
作者
Miltiadis A. Makrygiannakis,Kostis Giannakopoulos,Eleftherios G. Kaklamanos
出处
期刊:European Journal of Orthodontics [Oxford University Press]
标识
DOI:10.1093/ejo/cjae017
摘要

The increasing utilization of large language models (LLMs) in Generative Artificial Intelligence across various medical and dental fields, and specifically orthodontics, raises questions about their accuracy.This study aimed to assess and compare the answers offered by four LLMs: Google's Bard, OpenAI's ChatGPT-3.5, and ChatGPT-4, and Microsoft's Bing, in response to clinically relevant questions within the field of orthodontics.Ten open-type clinical orthodontics-related questions were posed to the LLMs. The responses provided by the LLMs were assessed on a scale ranging from 0 (minimum) to 10 (maximum) points, benchmarked against robust scientific evidence, including consensus statements and systematic reviews, using a predefined rubric. After a 4-week interval from the initial evaluation, the answers were reevaluated to gauge intra-evaluator reliability. Statistical comparisons were conducted on the scores using Friedman's and Wilcoxon's tests to identify the model providing the answers with the most comprehensiveness, scientific accuracy, clarity, and relevance.Overall, no statistically significant differences between the scores given by the two evaluators, on both scoring occasions, were detected, so an average score for every LLM was computed. The LLM answers scoring the highest, were those of Microsoft Bing Chat (average score = 7.1), followed by ChatGPT 4 (average score = 4.7), Google Bard (average score = 4.6), and finally ChatGPT 3.5 (average score 3.8). While Microsoft Bing Chat statistically outperformed ChatGPT-3.5 (P-value = 0.017) and Google Bard (P-value = 0.029), as well, and Chat GPT-4 outperformed Chat GPT-3.5 (P-value = 0.011), all models occasionally produced answers with a lack of comprehensiveness, scientific accuracy, clarity, and relevance.The questions asked were indicative and did not cover the entire field of orthodontics.Language models (LLMs) show great potential in supporting evidence-based orthodontics. However, their current limitations pose a potential risk of making incorrect healthcare decisions if utilized without careful consideration. Consequently, these tools cannot serve as a substitute for the orthodontist's essential critical thinking and comprehensive subject knowledge. For effective integration into practice, further research, clinical validation, and enhancements to the models are essential. Clinicians must be mindful of the limitations of LLMs, as their imprudent utilization could have adverse effects on patient care.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
scirubbish完成签到,获得积分10
刚刚
希望天下0贩的0应助zt采纳,获得10
1秒前
蔡鑫发布了新的文献求助30
2秒前
wind2631发布了新的文献求助10
2秒前
朱宸发布了新的文献求助10
3秒前
12458完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
Mona完成签到 ,获得积分10
5秒前
高高烙完成签到,获得积分10
6秒前
7秒前
贤惠的醉蝶完成签到,获得积分20
7秒前
晓珈越完成签到,获得积分10
7秒前
斯文败类应助林大大采纳,获得10
8秒前
8秒前
zwy应助科研通管家采纳,获得10
8秒前
情怀应助科研通管家采纳,获得10
8秒前
葡萄成熟完成签到,获得积分10
8秒前
共享精神应助科研通管家采纳,获得10
9秒前
贝贝应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
大咸鱼发布了新的文献求助10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
丰知然应助科研通管家采纳,获得10
9秒前
丰知然应助科研通管家采纳,获得10
9秒前
9秒前
丰知然应助科研通管家采纳,获得10
9秒前
CUIYU应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
9秒前
丰知然应助科研通管家采纳,获得10
10秒前
丘比特应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
丰知然应助科研通管家采纳,获得10
10秒前
丰知然应助科研通管家采纳,获得10
10秒前
10秒前
ding应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588775
求助须知:如何正确求助?哪些是违规求助? 4671698
关于积分的说明 14788654
捐赠科研通 4626241
什么是DOI,文献DOI怎么找? 2531957
邀请新用户注册赠送积分活动 1500530
关于科研通互助平台的介绍 1468329