Evidence-based potential of generative artificial intelligence large language models in orthodontics: a comparative study of ChatGPT, Google Bard, and Microsoft Bing

印为红字的 Microsoft excel 计算机科学 清晰 人工智能 统计 机器学习 自然语言处理 心理学 数学 数学教育 生物化学 操作系统 化学
作者
Miltiadis A. Makrygiannakis,Kostis Giannakopoulos,Eleftherios G. Kaklamanos
出处
期刊:European Journal of Orthodontics [Oxford University Press]
标识
DOI:10.1093/ejo/cjae017
摘要

The increasing utilization of large language models (LLMs) in Generative Artificial Intelligence across various medical and dental fields, and specifically orthodontics, raises questions about their accuracy.This study aimed to assess and compare the answers offered by four LLMs: Google's Bard, OpenAI's ChatGPT-3.5, and ChatGPT-4, and Microsoft's Bing, in response to clinically relevant questions within the field of orthodontics.Ten open-type clinical orthodontics-related questions were posed to the LLMs. The responses provided by the LLMs were assessed on a scale ranging from 0 (minimum) to 10 (maximum) points, benchmarked against robust scientific evidence, including consensus statements and systematic reviews, using a predefined rubric. After a 4-week interval from the initial evaluation, the answers were reevaluated to gauge intra-evaluator reliability. Statistical comparisons were conducted on the scores using Friedman's and Wilcoxon's tests to identify the model providing the answers with the most comprehensiveness, scientific accuracy, clarity, and relevance.Overall, no statistically significant differences between the scores given by the two evaluators, on both scoring occasions, were detected, so an average score for every LLM was computed. The LLM answers scoring the highest, were those of Microsoft Bing Chat (average score = 7.1), followed by ChatGPT 4 (average score = 4.7), Google Bard (average score = 4.6), and finally ChatGPT 3.5 (average score 3.8). While Microsoft Bing Chat statistically outperformed ChatGPT-3.5 (P-value = 0.017) and Google Bard (P-value = 0.029), as well, and Chat GPT-4 outperformed Chat GPT-3.5 (P-value = 0.011), all models occasionally produced answers with a lack of comprehensiveness, scientific accuracy, clarity, and relevance.The questions asked were indicative and did not cover the entire field of orthodontics.Language models (LLMs) show great potential in supporting evidence-based orthodontics. However, their current limitations pose a potential risk of making incorrect healthcare decisions if utilized without careful consideration. Consequently, these tools cannot serve as a substitute for the orthodontist's essential critical thinking and comprehensive subject knowledge. For effective integration into practice, further research, clinical validation, and enhancements to the models are essential. Clinicians must be mindful of the limitations of LLMs, as their imprudent utilization could have adverse effects on patient care.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助cincrady采纳,获得10
刚刚
JWKim发布了新的文献求助10
刚刚
1秒前
1秒前
倪妮完成签到,获得积分10
1秒前
香蕉觅云应助Aurora采纳,获得10
1秒前
mashu发布了新的文献求助10
1秒前
1秒前
下次见发布了新的文献求助10
2秒前
gzgljh完成签到,获得积分10
2秒前
鲤鱼鑫磊发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
迷路问夏完成签到,获得积分10
4秒前
5秒前
K神完成签到,获得积分10
5秒前
颖中竹子完成签到,获得积分10
5秒前
5秒前
Frida发布了新的文献求助10
6秒前
守护星星发布了新的文献求助10
6秒前
munire发布了新的文献求助10
6秒前
哈哈哈发布了新的文献求助10
6秒前
迷路问夏发布了新的文献求助10
7秒前
Yynlty发布了新的文献求助10
7秒前
9秒前
bct完成签到,获得积分10
9秒前
执着怜珊发布了新的文献求助10
9秒前
王涛完成签到,获得积分10
10秒前
10秒前
11秒前
虚幻的鱼发布了新的文献求助10
11秒前
huang发布了新的文献求助10
11秒前
瓶邪发布了新的文献求助10
12秒前
李爱国应助orange9采纳,获得10
13秒前
搜集达人应助wuyanzu采纳,获得10
14秒前
14秒前
14秒前
缥缈绮兰完成签到,获得积分20
14秒前
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149141
求助须知:如何正确求助?哪些是违规求助? 2800201
关于积分的说明 7838971
捐赠科研通 2457756
什么是DOI,文献DOI怎么找? 1308090
科研通“疑难数据库(出版商)”最低求助积分说明 628392
版权声明 601706