Evidence-based potential of generative artificial intelligence large language models in orthodontics: a comparative study of ChatGPT, Google Bard, and Microsoft Bing

印为红字的 Microsoft excel 计算机科学 清晰 人工智能 统计 机器学习 自然语言处理 心理学 数学 数学教育 生物化学 化学 操作系统
作者
Miltiadis A. Makrygiannakis,Kostis Giannakopoulos,Eleftherios G. Kaklamanos
出处
期刊:European Journal of Orthodontics [Oxford University Press]
标识
DOI:10.1093/ejo/cjae017
摘要

The increasing utilization of large language models (LLMs) in Generative Artificial Intelligence across various medical and dental fields, and specifically orthodontics, raises questions about their accuracy.This study aimed to assess and compare the answers offered by four LLMs: Google's Bard, OpenAI's ChatGPT-3.5, and ChatGPT-4, and Microsoft's Bing, in response to clinically relevant questions within the field of orthodontics.Ten open-type clinical orthodontics-related questions were posed to the LLMs. The responses provided by the LLMs were assessed on a scale ranging from 0 (minimum) to 10 (maximum) points, benchmarked against robust scientific evidence, including consensus statements and systematic reviews, using a predefined rubric. After a 4-week interval from the initial evaluation, the answers were reevaluated to gauge intra-evaluator reliability. Statistical comparisons were conducted on the scores using Friedman's and Wilcoxon's tests to identify the model providing the answers with the most comprehensiveness, scientific accuracy, clarity, and relevance.Overall, no statistically significant differences between the scores given by the two evaluators, on both scoring occasions, were detected, so an average score for every LLM was computed. The LLM answers scoring the highest, were those of Microsoft Bing Chat (average score = 7.1), followed by ChatGPT 4 (average score = 4.7), Google Bard (average score = 4.6), and finally ChatGPT 3.5 (average score 3.8). While Microsoft Bing Chat statistically outperformed ChatGPT-3.5 (P-value = 0.017) and Google Bard (P-value = 0.029), as well, and Chat GPT-4 outperformed Chat GPT-3.5 (P-value = 0.011), all models occasionally produced answers with a lack of comprehensiveness, scientific accuracy, clarity, and relevance.The questions asked were indicative and did not cover the entire field of orthodontics.Language models (LLMs) show great potential in supporting evidence-based orthodontics. However, their current limitations pose a potential risk of making incorrect healthcare decisions if utilized without careful consideration. Consequently, these tools cannot serve as a substitute for the orthodontist's essential critical thinking and comprehensive subject knowledge. For effective integration into practice, further research, clinical validation, and enhancements to the models are essential. Clinicians must be mindful of the limitations of LLMs, as their imprudent utilization could have adverse effects on patient care.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
咕咕咕完成签到,获得积分10
刚刚
经法发布了新的文献求助10
1秒前
晚亭完成签到,获得积分10
1秒前
欲望被鬼举报戚薇求助涉嫌违规
2秒前
yangyang发布了新的文献求助10
2秒前
优雅的琳发布了新的文献求助10
3秒前
时光发布了新的文献求助10
3秒前
yuki完成签到,获得积分10
3秒前
南逸然完成签到,获得积分10
3秒前
3秒前
4秒前
HongJiang发布了新的文献求助10
4秒前
4秒前
筱谭完成签到 ,获得积分10
4秒前
guanze完成签到 ,获得积分10
5秒前
zho关闭了zho文献求助
5秒前
ding应助起承转合采纳,获得10
5秒前
6秒前
蛋炒饭不加蛋完成签到,获得积分10
6秒前
酷炫素完成签到,获得积分10
6秒前
阿金发布了新的文献求助10
7秒前
Jasper应助帅气鹭洋采纳,获得10
7秒前
7秒前
明天更好发布了新的文献求助10
7秒前
8秒前
科研通AI5应助小柠檬采纳,获得10
8秒前
YY完成签到,获得积分10
8秒前
9秒前
科研通AI5应助stt采纳,获得10
9秒前
LDM发布了新的文献求助10
9秒前
上官若男应助乐正成危采纳,获得10
10秒前
小二郎应助有魅力傲菡采纳,获得10
10秒前
追寻夜香完成签到,获得积分10
10秒前
青石完成签到,获得积分20
11秒前
11秒前
浩浩大人发布了新的文献求助10
11秒前
白榆发布了新的文献求助10
11秒前
咕噜仔发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678