Evidence-based potential of generative artificial intelligence large language models in orthodontics: a comparative study of ChatGPT, Google Bard, and Microsoft Bing

印为红字的 Microsoft excel 计算机科学 清晰 人工智能 统计 机器学习 自然语言处理 心理学 数学 数学教育 生物化学 操作系统 化学
作者
Miltiadis A. Makrygiannakis,Kostis Giannakopoulos,Eleftherios G. Kaklamanos
出处
期刊:European Journal of Orthodontics [Oxford University Press]
标识
DOI:10.1093/ejo/cjae017
摘要

The increasing utilization of large language models (LLMs) in Generative Artificial Intelligence across various medical and dental fields, and specifically orthodontics, raises questions about their accuracy.This study aimed to assess and compare the answers offered by four LLMs: Google's Bard, OpenAI's ChatGPT-3.5, and ChatGPT-4, and Microsoft's Bing, in response to clinically relevant questions within the field of orthodontics.Ten open-type clinical orthodontics-related questions were posed to the LLMs. The responses provided by the LLMs were assessed on a scale ranging from 0 (minimum) to 10 (maximum) points, benchmarked against robust scientific evidence, including consensus statements and systematic reviews, using a predefined rubric. After a 4-week interval from the initial evaluation, the answers were reevaluated to gauge intra-evaluator reliability. Statistical comparisons were conducted on the scores using Friedman's and Wilcoxon's tests to identify the model providing the answers with the most comprehensiveness, scientific accuracy, clarity, and relevance.Overall, no statistically significant differences between the scores given by the two evaluators, on both scoring occasions, were detected, so an average score for every LLM was computed. The LLM answers scoring the highest, were those of Microsoft Bing Chat (average score = 7.1), followed by ChatGPT 4 (average score = 4.7), Google Bard (average score = 4.6), and finally ChatGPT 3.5 (average score 3.8). While Microsoft Bing Chat statistically outperformed ChatGPT-3.5 (P-value = 0.017) and Google Bard (P-value = 0.029), as well, and Chat GPT-4 outperformed Chat GPT-3.5 (P-value = 0.011), all models occasionally produced answers with a lack of comprehensiveness, scientific accuracy, clarity, and relevance.The questions asked were indicative and did not cover the entire field of orthodontics.Language models (LLMs) show great potential in supporting evidence-based orthodontics. However, their current limitations pose a potential risk of making incorrect healthcare decisions if utilized without careful consideration. Consequently, these tools cannot serve as a substitute for the orthodontist's essential critical thinking and comprehensive subject knowledge. For effective integration into practice, further research, clinical validation, and enhancements to the models are essential. Clinicians must be mindful of the limitations of LLMs, as their imprudent utilization could have adverse effects on patient care.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研路上互帮互助,共同进步完成签到 ,获得积分10
1秒前
1秒前
美满的稚晴完成签到 ,获得积分10
1秒前
shanekhost完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
6秒前
6秒前
7秒前
完美世界应助Infinit采纳,获得10
9秒前
Teko发布了新的文献求助10
11秒前
Akim应助油个大饼呜呜呜采纳,获得10
11秒前
chris完成签到,获得积分10
11秒前
FXQ123_范发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
14秒前
14秒前
机灵飞阳发布了新的文献求助10
16秒前
17秒前
17秒前
18秒前
18秒前
斯文败类应助Teko采纳,获得10
18秒前
脑洞疼应助小左采纳,获得10
20秒前
22秒前
嗯嗯发布了新的文献求助10
23秒前
23秒前
浮生发布了新的文献求助10
23秒前
24秒前
Teko完成签到,获得积分10
27秒前
英俊的铭应助程之杭采纳,获得10
27秒前
30秒前
喻义梅发布了新的文献求助10
30秒前
jk发布了新的文献求助10
31秒前
可爱的安萱完成签到,获得积分10
33秒前
orixero应助尼莫采纳,获得10
34秒前
35秒前
泡面完成签到 ,获得积分10
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989263
求助须知:如何正确求助?哪些是违规求助? 3531418
关于积分的说明 11253814
捐赠科研通 3270066
什么是DOI,文献DOI怎么找? 1804884
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136