量子
发光
分子
波长
量子产额
计算机科学
Boosting(机器学习)
量子化学
材料科学
生物系统
化学物理
化学
机器学习
物理
量子力学
光电子学
荧光
有机化学
超分子化学
生物
作者
Hele Bi,Jiale Jiang,Junzhao Chen,Xiaojun Kuang,Jinxiao Zhang
出处
期刊:Materials
[MDPI AG]
日期:2024-04-04
卷期号:17 (7): 1664-1664
摘要
The aggregation-induced emission (AIE) effect exhibits a significant influence on the development of luminescent materials and has made remarkable progress over the past decades. The advancement of high-performance AIE materials requires fast and accurate predictions of their photophysical properties, which is impeded by the inherent limitations of quantum chemical calculations. In this work, we present an accurate machine learning approach for the fast predictions of quantum yields and wavelengths to screen out AIE molecules. A database of about 563 organic luminescent molecules with quantum yields and wavelengths in the monomeric/aggregated states was established. Individual/combined molecular fingerprints were selected and compared elaborately to attain appropriate molecular descriptors. Different machine learning algorithms combined with favorable molecular fingerprints were further screened to achieve more accurate prediction models. The simulation results indicate that combined molecular fingerprints yield more accurate predictions in the aggregated states, and random forest and gradient boosting regression algorithms show the best predictions in quantum yields and wavelengths, respectively. Given the successful applications of machine learning in quantum yields and wavelengths, it is reasonable to anticipate that machine learning can serve as a complementary strategy to traditional experimental/theoretical methods in the investigation of aggregation-induced luminescent molecules to facilitate the discovery of luminescent materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI