Machine Learning Prediction of Quantum Yields and Wavelengths of Aggregation-Induced Emission Molecules

量子 发光 分子 波长 量子产额 计算机科学 Boosting(机器学习) 量子化学 材料科学 生物系统 化学物理 化学 机器学习 物理 量子力学 光电子学 荧光 有机化学 超分子化学 生物
作者
Hele Bi,Jiale Jiang,Junzhao Chen,Xiaojun Kuang,Jinxiao Zhang
出处
期刊:Materials [Multidisciplinary Digital Publishing Institute]
卷期号:17 (7): 1664-1664
标识
DOI:10.3390/ma17071664
摘要

The aggregation-induced emission (AIE) effect exhibits a significant influence on the development of luminescent materials and has made remarkable progress over the past decades. The advancement of high-performance AIE materials requires fast and accurate predictions of their photophysical properties, which is impeded by the inherent limitations of quantum chemical calculations. In this work, we present an accurate machine learning approach for the fast predictions of quantum yields and wavelengths to screen out AIE molecules. A database of about 563 organic luminescent molecules with quantum yields and wavelengths in the monomeric/aggregated states was established. Individual/combined molecular fingerprints were selected and compared elaborately to attain appropriate molecular descriptors. Different machine learning algorithms combined with favorable molecular fingerprints were further screened to achieve more accurate prediction models. The simulation results indicate that combined molecular fingerprints yield more accurate predictions in the aggregated states, and random forest and gradient boosting regression algorithms show the best predictions in quantum yields and wavelengths, respectively. Given the successful applications of machine learning in quantum yields and wavelengths, it is reasonable to anticipate that machine learning can serve as a complementary strategy to traditional experimental/theoretical methods in the investigation of aggregation-induced luminescent molecules to facilitate the discovery of luminescent materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助悲凉的初翠采纳,获得10
1秒前
1秒前
阿信必发JACS完成签到,获得积分10
1秒前
顺利紫山发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
sunshinegirl发布了新的文献求助10
4秒前
白水发布了新的文献求助30
5秒前
5秒前
望舒发布了新的文献求助10
5秒前
6秒前
Baili应助felix采纳,获得50
8秒前
Baili应助felix采纳,获得50
8秒前
Baili应助felix采纳,获得50
8秒前
乐乐应助felix采纳,获得10
8秒前
闹心发布了新的文献求助10
8秒前
脸小呆呆发布了新的文献求助10
9秒前
sun发布了新的文献求助10
9秒前
望舒完成签到,获得积分10
13秒前
六五发布了新的文献求助10
13秒前
18秒前
小鱼儿发布了新的文献求助10
19秒前
19秒前
孙燕应助ys采纳,获得30
20秒前
KEQIN应助lrh采纳,获得10
23秒前
June发布了新的文献求助30
24秒前
zhhh发布了新的文献求助10
24秒前
25秒前
不加香菜完成签到 ,获得积分10
25秒前
fwy发布了新的文献求助10
28秒前
30秒前
31秒前
31秒前
33秒前
早睡早起发布了新的文献求助10
35秒前
37秒前
在水一方应助冬天雪山茶采纳,获得10
39秒前
英姑应助六五采纳,获得10
40秒前
乐乐应助sunshinegirl采纳,获得30
40秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993587
求助须知:如何正确求助?哪些是违规求助? 3534299
关于积分的说明 11265206
捐赠科研通 3274074
什么是DOI,文献DOI怎么找? 1806303
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809712