Capacity provisioning for evacuation on path networks

计算机科学 流量网络 数学优化 利用 水槽(地理) 路径(计算) 供应 参数统计 线性规划 计算机网络 数学 算法 统计 地图学 计算机安全 地理
作者
Robert Benkoczi,Oluwaseun F. Lijoka
出处
期刊:Networks [Wiley]
卷期号:81 (1): 75-92
标识
DOI:10.1002/net.22118
摘要

Abstract Designing an appropriate evacuation plan in the event of large scale disasters is extremely important. A considerable research effort has been invested in effective mathematical models and algorithms for the evacuation of densely populated areas. Dynamic networks and flows, and the closely related sink location and evacuation problems are research directions that are being actively pursued at the moment. In this work, we propose an extension of the sink location problem in dynamic networks that is suitable for planning the evacuation of remote and sparsely populated communities. We exploit the connection between the capacity of a transportation network and the amount of resources allocated to the rescue operation, and we introduce a new objective function for the problem of evacuation in a dynamic network. Given a network with known edge lengths and with a known number of evacuees located at the vertices, we would like to assign capacities to the edges of the network, from a fixed capacity budget, in such a way that the evacuation time of all evacuees to the set of fixed sink nodes in the network is minimized. We consider a simple path network with one fixed sink node and observe that the solution can be obtained numerically from a non‐linear program. However, by exploiting two useful properties of the optimal capacity allocation, we propose a combinatorial algorithm that returns a parametric solution, that is, a solution that depends on a single parameter, namely the capacity assigned to one edge of the path. Our algorithm runs in time where is the budgeted capacity, is the precision to which the solution is computed, and is the number of vertices occupied by evacuees in an ‐vertex path. This work is the first to consider the capacity allocation problem in the context of sink location problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
纵是百万大军又如何完成签到,获得积分10
1秒前
3秒前
机灵的鸣凤完成签到,获得积分10
3秒前
Erin发布了新的文献求助30
4秒前
辛德瑞拉02完成签到,获得积分10
4秒前
舒适仰关注了科研通微信公众号
4秒前
万能图书馆应助宏、采纳,获得10
5秒前
zhangruixue0519完成签到 ,获得积分10
5秒前
完美世界应助专一的书雪采纳,获得10
6秒前
我是老大应助哈哈采纳,获得10
9秒前
lxy2002完成签到,获得积分10
10秒前
11秒前
大个应助Aurora采纳,获得10
12秒前
xbchen完成签到,获得积分10
12秒前
香蕉觅云应助谢峥嵘采纳,获得10
12秒前
13秒前
14秒前
真实的半仙完成签到,获得积分10
15秒前
FashionBoy应助yanxun采纳,获得10
15秒前
kiddnie发布了新的文献求助50
15秒前
邹友亮完成签到,获得积分10
16秒前
16秒前
Wxx完成签到 ,获得积分10
16秒前
17秒前
18秒前
18秒前
18秒前
20秒前
20秒前
21秒前
21秒前
小蘑菇应助zzzzd采纳,获得10
22秒前
科研民工发布了新的文献求助10
23秒前
n张黎明发布了新的文献求助30
24秒前
现代书竹发布了新的文献求助10
24秒前
开心便当发布了新的文献求助10
25秒前
明亮翠桃发布了新的文献求助10
25秒前
Aurora发布了新的文献求助10
25秒前
Erin完成签到,获得积分10
26秒前
王蕊完成签到 ,获得积分10
26秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149155
求助须知:如何正确求助?哪些是违规求助? 2800230
关于积分的说明 7839164
捐赠科研通 2457781
什么是DOI,文献DOI怎么找? 1308112
科研通“疑难数据库(出版商)”最低求助积分说明 628408
版权声明 601706