HorNet: Efficient High-Order Spatial Interactions with Recursive Gated Convolutions

计算机科学 计算 可扩展性 卷积(计算机科学) 编码器 算法 理论计算机科学 人工智能 人工神经网络 数据库 操作系统
作者
Yongming Rao,Wenliang Zhao,Yansong Tang,Jie Zhou,Ser-Nam Lim,Jiwen Lu
出处
期刊:Cornell University - arXiv 被引量:127
标识
DOI:10.48550/arxiv.2207.14284
摘要

Recent progress in vision Transformers exhibits great success in various tasks driven by the new spatial modeling mechanism based on dot-product self-attention. In this paper, we show that the key ingredients behind the vision Transformers, namely input-adaptive, long-range and high-order spatial interactions, can also be efficiently implemented with a convolution-based framework. We present the Recursive Gated Convolution ($\textit{g}^\textit{n}$Conv) that performs high-order spatial interactions with gated convolutions and recursive designs. The new operation is highly flexible and customizable, which is compatible with various variants of convolution and extends the two-order interactions in self-attention to arbitrary orders without introducing significant extra computation. $\textit{g}^\textit{n}$Conv can serve as a plug-and-play module to improve various vision Transformers and convolution-based models. Based on the operation, we construct a new family of generic vision backbones named HorNet. Extensive experiments on ImageNet classification, COCO object detection and ADE20K semantic segmentation show HorNet outperform Swin Transformers and ConvNeXt by a significant margin with similar overall architecture and training configurations. HorNet also shows favorable scalability to more training data and larger model sizes. Apart from the effectiveness in visual encoders, we also show $\textit{g}^\textit{n}$Conv can be applied to task-specific decoders and consistently improve dense prediction performance with less computation. Our results demonstrate that $\textit{g}^\textit{n}$Conv can be a new basic module for visual modeling that effectively combines the merits of both vision Transformers and CNNs. Code is available at https://github.com/raoyongming/HorNet

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
龙龙宝宝发布了新的文献求助10
刚刚
hf发布了新的文献求助10
1秒前
李健应助roro熊采纳,获得10
4秒前
4秒前
华仔应助幸福台灯采纳,获得10
5秒前
CodeCraft应助Azhe采纳,获得10
5秒前
米酒完成签到 ,获得积分10
5秒前
英姑应助细腻含羞草采纳,获得10
7秒前
michael发布了新的文献求助10
8秒前
丘比特应助younghippo采纳,获得10
11秒前
13秒前
乐乐完成签到,获得积分10
14秒前
15秒前
hf完成签到,获得积分20
15秒前
16秒前
16秒前
16秒前
可爱多完成签到,获得积分10
17秒前
qianlu完成签到 ,获得积分10
18秒前
roro熊发布了新的文献求助10
20秒前
20秒前
幸福台灯发布了新的文献求助10
20秒前
20秒前
章建清完成签到 ,获得积分10
20秒前
Azhe发布了新的文献求助10
21秒前
想发paper的金鱼完成签到,获得积分10
21秒前
周em12_发布了新的文献求助10
22秒前
东邪西毒加任我行完成签到,获得积分10
23秒前
23秒前
23秒前
搜集达人应助细腻含羞草采纳,获得10
25秒前
歪歪关注了科研通微信公众号
26秒前
26秒前
26秒前
无花果应助幸福台灯采纳,获得10
28秒前
灵兰QAQ完成签到,获得积分10
28秒前
戏谑发布了新的文献求助10
28秒前
LW90完成签到,获得积分10
28秒前
Akim应助roro熊采纳,获得10
28秒前
范范发布了新的文献求助30
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565622
求助须知:如何正确求助?哪些是违规求助? 4650680
关于积分的说明 14692351
捐赠科研通 4592670
什么是DOI,文献DOI怎么找? 2519689
邀请新用户注册赠送积分活动 1492102
关于科研通互助平台的介绍 1463281