HorNet: Efficient High-Order Spatial Interactions with Recursive Gated Convolutions

计算机科学 计算 可扩展性 卷积(计算机科学) 编码器 算法 理论计算机科学 人工智能 人工神经网络 数据库 操作系统
作者
Yongming Rao,Wenliang Zhao,Yansong Tang,Jie Zhou,Ser-Nam Lim,Jiwen Lu
出处
期刊:Cornell University - arXiv 被引量:127
标识
DOI:10.48550/arxiv.2207.14284
摘要

Recent progress in vision Transformers exhibits great success in various tasks driven by the new spatial modeling mechanism based on dot-product self-attention. In this paper, we show that the key ingredients behind the vision Transformers, namely input-adaptive, long-range and high-order spatial interactions, can also be efficiently implemented with a convolution-based framework. We present the Recursive Gated Convolution ($\textit{g}^\textit{n}$Conv) that performs high-order spatial interactions with gated convolutions and recursive designs. The new operation is highly flexible and customizable, which is compatible with various variants of convolution and extends the two-order interactions in self-attention to arbitrary orders without introducing significant extra computation. $\textit{g}^\textit{n}$Conv can serve as a plug-and-play module to improve various vision Transformers and convolution-based models. Based on the operation, we construct a new family of generic vision backbones named HorNet. Extensive experiments on ImageNet classification, COCO object detection and ADE20K semantic segmentation show HorNet outperform Swin Transformers and ConvNeXt by a significant margin with similar overall architecture and training configurations. HorNet also shows favorable scalability to more training data and larger model sizes. Apart from the effectiveness in visual encoders, we also show $\textit{g}^\textit{n}$Conv can be applied to task-specific decoders and consistently improve dense prediction performance with less computation. Our results demonstrate that $\textit{g}^\textit{n}$Conv can be a new basic module for visual modeling that effectively combines the merits of both vision Transformers and CNNs. Code is available at https://github.com/raoyongming/HorNet
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏冬完成签到,获得积分10
1秒前
周周完成签到,获得积分10
1秒前
like_Y完成签到,获得积分10
1秒前
2秒前
脑洞疼应助文文采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
卡卡西应助科研通管家采纳,获得20
3秒前
pluto应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
bing发布了新的文献求助10
3秒前
清玖完成签到,获得积分20
5秒前
机灵鬼完成签到,获得积分10
7秒前
Nann完成签到 ,获得积分10
8秒前
9秒前
MOMO完成签到,获得积分10
9秒前
SYLH应助like_Y采纳,获得10
11秒前
12秒前
田様应助尊敬的芷卉采纳,获得10
13秒前
量子星尘发布了新的文献求助10
15秒前
你好完成签到,获得积分10
16秒前
16秒前
ksrcc发布了新的文献求助10
16秒前
婷婷婷完成签到 ,获得积分10
17秒前
逃亡的小狗完成签到,获得积分10
19秒前
illusion完成签到,获得积分10
22秒前
23秒前
隐形曼青应助叶y采纳,获得10
23秒前
嗨波完成签到,获得积分10
24秒前
陌小千完成签到 ,获得积分10
24秒前
tufuczy完成签到,获得积分10
26秒前
JC完成签到,获得积分10
26秒前
清颜发布了新的文献求助10
28秒前
8R60d8应助独特的幻悲采纳,获得10
29秒前
十月完成签到 ,获得积分10
29秒前
小兔子乖乖完成签到 ,获得积分10
32秒前
思源应助alarfred采纳,获得10
32秒前
homo完成签到,获得积分10
34秒前
35秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961041
求助须知:如何正确求助?哪些是违规求助? 3507280
关于积分的说明 11135306
捐赠科研通 3239705
什么是DOI,文献DOI怎么找? 1790347
邀请新用户注册赠送积分活动 872359
科研通“疑难数据库(出版商)”最低求助积分说明 803150