HorNet: Efficient High-Order Spatial Interactions with Recursive Gated Convolutions

计算机科学 计算 可扩展性 卷积(计算机科学) 编码器 算法 理论计算机科学 人工智能 人工神经网络 数据库 操作系统
作者
Yongming Rao,Wenliang Zhao,Yansong Tang,Jie Zhou,Ser-Nam Lim,Jiwen Lu
出处
期刊:Cornell University - arXiv 被引量:127
标识
DOI:10.48550/arxiv.2207.14284
摘要

Recent progress in vision Transformers exhibits great success in various tasks driven by the new spatial modeling mechanism based on dot-product self-attention. In this paper, we show that the key ingredients behind the vision Transformers, namely input-adaptive, long-range and high-order spatial interactions, can also be efficiently implemented with a convolution-based framework. We present the Recursive Gated Convolution ($\textit{g}^\textit{n}$Conv) that performs high-order spatial interactions with gated convolutions and recursive designs. The new operation is highly flexible and customizable, which is compatible with various variants of convolution and extends the two-order interactions in self-attention to arbitrary orders without introducing significant extra computation. $\textit{g}^\textit{n}$Conv can serve as a plug-and-play module to improve various vision Transformers and convolution-based models. Based on the operation, we construct a new family of generic vision backbones named HorNet. Extensive experiments on ImageNet classification, COCO object detection and ADE20K semantic segmentation show HorNet outperform Swin Transformers and ConvNeXt by a significant margin with similar overall architecture and training configurations. HorNet also shows favorable scalability to more training data and larger model sizes. Apart from the effectiveness in visual encoders, we also show $\textit{g}^\textit{n}$Conv can be applied to task-specific decoders and consistently improve dense prediction performance with less computation. Our results demonstrate that $\textit{g}^\textit{n}$Conv can be a new basic module for visual modeling that effectively combines the merits of both vision Transformers and CNNs. Code is available at https://github.com/raoyongming/HorNet

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zl987发布了新的文献求助10
刚刚
1秒前
CodeCraft应助sophieCCM0302采纳,获得10
2秒前
浪子应助OPV采纳,获得10
2秒前
仙布着急发布了新的文献求助10
2秒前
lpylll发布了新的文献求助10
2秒前
鹤轸发布了新的文献求助10
3秒前
3秒前
3秒前
007完成签到 ,获得积分10
3秒前
4秒前
5秒前
OK发布了新的文献求助20
5秒前
月球上的人完成签到,获得积分10
5秒前
6秒前
阿依咕噜完成签到,获得积分10
7秒前
善学以致用应助奥氏采纳,获得10
8秒前
圆圆的大脑完成签到,获得积分10
8秒前
科目三应助小tan采纳,获得10
8秒前
8秒前
慕青应助123131采纳,获得10
8秒前
科研通AI6.1应助呆萌宝莹采纳,获得10
9秒前
9秒前
风清扬发布了新的文献求助10
9秒前
9秒前
四夕水窖完成签到,获得积分10
9秒前
kei发布了新的文献求助10
10秒前
10秒前
11秒前
仁爱曼荷发布了新的文献求助10
12秒前
13秒前
13秒前
ZZ发布了新的文献求助20
14秒前
14秒前
14秒前
cc66发布了新的文献求助10
14秒前
宋JINGLEI完成签到,获得积分10
15秒前
15秒前
CodeCraft应助luckily采纳,获得10
15秒前
羊屎蛋完成签到 ,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735261
求助须知:如何正确求助?哪些是违规求助? 5359491
关于积分的说明 15329099
捐赠科研通 4879515
什么是DOI,文献DOI怎么找? 2622039
邀请新用户注册赠送积分活动 1571201
关于科研通互助平台的介绍 1528011