HorNet: Efficient High-Order Spatial Interactions with Recursive Gated Convolutions

计算机科学 计算 可扩展性 卷积(计算机科学) 编码器 算法 理论计算机科学 人工智能 人工神经网络 数据库 操作系统
作者
Yongming Rao,Wenliang Zhao,Yansong Tang,Jie Zhou,Ser-Nam Lim,Jiwen Lu
出处
期刊:Cornell University - arXiv 被引量:127
标识
DOI:10.48550/arxiv.2207.14284
摘要

Recent progress in vision Transformers exhibits great success in various tasks driven by the new spatial modeling mechanism based on dot-product self-attention. In this paper, we show that the key ingredients behind the vision Transformers, namely input-adaptive, long-range and high-order spatial interactions, can also be efficiently implemented with a convolution-based framework. We present the Recursive Gated Convolution ($\textit{g}^\textit{n}$Conv) that performs high-order spatial interactions with gated convolutions and recursive designs. The new operation is highly flexible and customizable, which is compatible with various variants of convolution and extends the two-order interactions in self-attention to arbitrary orders without introducing significant extra computation. $\textit{g}^\textit{n}$Conv can serve as a plug-and-play module to improve various vision Transformers and convolution-based models. Based on the operation, we construct a new family of generic vision backbones named HorNet. Extensive experiments on ImageNet classification, COCO object detection and ADE20K semantic segmentation show HorNet outperform Swin Transformers and ConvNeXt by a significant margin with similar overall architecture and training configurations. HorNet also shows favorable scalability to more training data and larger model sizes. Apart from the effectiveness in visual encoders, we also show $\textit{g}^\textit{n}$Conv can be applied to task-specific decoders and consistently improve dense prediction performance with less computation. Our results demonstrate that $\textit{g}^\textit{n}$Conv can be a new basic module for visual modeling that effectively combines the merits of both vision Transformers and CNNs. Code is available at https://github.com/raoyongming/HorNet
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BX1823关注了科研通微信公众号
刚刚
刚刚
丘比特应助无私幻枫采纳,获得10
1秒前
wishes完成签到 ,获得积分10
1秒前
顾矜应助ll2925203采纳,获得10
1秒前
爆米花应助科研老采纳,获得30
1秒前
1秒前
2秒前
2秒前
2秒前
revo完成签到,获得积分10
2秒前
Neymar完成签到,获得积分10
2秒前
gzy完成签到,获得积分20
2秒前
阿藏完成签到,获得积分10
3秒前
YDM关闭了YDM文献求助
3秒前
谢颖发布了新的文献求助10
3秒前
zouzou发布了新的文献求助10
3秒前
无可匹敌的饭量完成签到,获得积分10
4秒前
4秒前
4秒前
666ll完成签到,获得积分10
4秒前
4秒前
是你完成签到,获得积分20
4秒前
见景风完成签到,获得积分10
5秒前
juzi完成签到,获得积分10
5秒前
作案不留痕完成签到,获得积分10
5秒前
5秒前
林子昂发布了新的文献求助10
5秒前
5秒前
5秒前
十三应助jm采纳,获得10
5秒前
桐桐应助刻苦大叔采纳,获得10
6秒前
rong发布了新的文献求助10
6秒前
xuxu完成签到,获得积分10
6秒前
6秒前
7秒前
ning发布了新的文献求助10
7秒前
云端完成签到,获得积分10
8秒前
明月照我程完成签到,获得积分10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5258050
求助须知:如何正确求助?哪些是违规求助? 4419997
关于积分的说明 13758921
捐赠科研通 4293480
什么是DOI,文献DOI怎么找? 2356024
邀请新用户注册赠送积分活动 1352424
关于科研通互助平台的介绍 1313196