太赫兹辐射
超材料
太赫兹光谱与技术
光学
圆二色性
束缚态
物理
光子学
光电子学
凝聚态物理
量子力学
化学
结晶学
作者
Yaolin Hu,Suxia Xie,Chongjun Bai,Weiwei Shen,Jingcheng Yang
出处
期刊:Crystals
[MDPI AG]
日期:2022-07-28
卷期号:12 (8): 1052-1052
被引量:10
标识
DOI:10.3390/cryst12081052
摘要
Bound state in the continuum (BIC) as a novel non-radiating state of light in the continuum of propagating modes has received great attention in photonics. Recently, chiral BICs have been introduced in the terahertz regime. However, strong chiroptical effects of transmitted waves remain challenging to achieve in metallic terahertz metasurfaces, especially for intrinsic chirality at normal incidences. Here, we propose a chiral quasi-BIC by simultaneously breaking the out-of-plane mirror and in-plane C2 rotation symmetries in a bilayer metallic metasurface, in which spin-selective terahertz transmittance is successfully realized. Benefiting from the symmetry-protected nature of our proposed BIC, precise tuning of structural parameters can lead to anticipated chiroptical performance. As a degree of freedom, the rotation angle of the split ring gaps can fully determine the handedness, linewidth, and working frequency with strong circular dichroism. Besides, the sensing performance shows a surrounding refractive index sensitivity of 200 GHz/RIU, which is similar to those of previous works based on terahertz metasurfaces. Taking advantage exclusively of symmetry-protected BICs to realize transmitted terahertz chiroptical response provides fresh insights into the creation of novel BICs, which enables profound advancements in the surging field of novel terahertz devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI