强化学习
可扩展性
计算机科学
抽象
维数(图论)
订单(交换)
人工智能
混合模式
模拟
运筹学
工程类
数学
业务
数据库
认识论
财务
哲学
复合材料
材料科学
纯数学
作者
Jinhao Xi,Fenghua Zhu,Peijun Ye,Yisheng Lv,Haina Tang,Fei–Yue Wang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems
[Institute of Electrical and Electronics Engineers]
日期:2022-07-25
卷期号:23 (11): 21861-21872
被引量:9
标识
DOI:10.1109/tits.2022.3191752
摘要
The imbalance of vehicle supply and demand is a common phenomenon that influences the efficiency of online ride-hailing systems greatly. To address this problem, a three-level hierarchical mixed deep reinforcement learning method (HMDRL) is proposed to reposition idle vehicles. A manager operates at the top level, where action-abstraction is conducted from the time dimension and is adaptive for spatially scalable and time-varying systems. Coordinators locate at the middle level and a parallel coordination mechanism that is independent of the decision order is designed to improve the efficiency of the repositioning. The bottom level is composed of executive workers to reposition vehicles with mixed states and the states contain spatiotemporal information of agents' neighbor areas. Two reward functions are designed for the manager and the coordinators, respectively, aiming to improve the training effect by avoiding sparse rewards. A simulator based on real orders is designed and HMDRL is compared with six methods. Experimental results demonstrate that HMDRL outperforms all the other methods. In three comparison experiments, the order response rate is increased by 0.62% to 8.29%, 1.5% to 7.78%, 1.18% to 4.75%, respectively.
科研通智能强力驱动
Strongly Powered by AbleSci AI