Machine learning-based prediction and inverse design of 2D metamaterial structures with tunable deformation-dependent Poisson's ratio

泊松分布 泊松比 反向 超材料 材料科学 纵横比(航空) 计算机科学 拓扑(电路) 统计物理学 数学优化 算法 数学 几何学 物理 复合材料 统计 光电子学 组合数学
作者
Jie Tian,Keke Tang,Xianyan Chen,Xianqiao Wang
出处
期刊:Nanoscale [The Royal Society of Chemistry]
卷期号:14 (35): 12677-12691 被引量:33
标识
DOI:10.1039/d2nr02509d
摘要

With the aid of recent efficient and prior knowledge-free machine learning (ML) algorithms, extraordinary mechanical properties such as negative Poisson's ratio have extensively promoted the diverse designs of metamaterials with distinctive cellular structures. However, most existing ML approaches applied to the design of metamaterials are primarily based on a single property value with the assumption that the Poisson's ratio of a material is stationary, neglecting the dynamic variability of Poisson's ratio, termed deformation-dependent Poisson's ratio, during the loading process that a metamaterial other than conventional materials may experience. This paper first proposes a crystallographic symmetry-based methodology to build 2D metamaterials with complex but patterned topological structures, and then converts them into computational models suitable for molecular dynamics simulations. Then, we employ an integrated approach, consisting of molecular dynamics simulations capable of generating and collecting a large dataset for training/validation, in addition to ML algorithms (CNN and Cycle-GAN) able to predict the dynamic characteristics of Poisson's ratio and offer the inverse design of a metamaterial structure based on a target quasi-continuous Poisson's ratio-strain curve, to eventually unravel the underlying mechanism and design principles of 2D metamaterial structures with tunable Poisson's ratio. The close match between the predefined Poisson's ratio response and that from the generated structure validates the feasibility of the proposed ML model. Owing to the high efficiency and complete independence from prior knowledge, our proposed approach offers a novel and robust technique for the prediction and inverse design of metamaterial structures with tailored deformation-dependent Poisson's ratio, an unprecedented property attractive in flexible electronics, soft robotics, and nanodevices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
无花果应助zzz2193采纳,获得10
1秒前
surain发布了新的文献求助10
1秒前
大力可冥发布了新的文献求助10
4秒前
天意不可违完成签到,获得积分10
4秒前
不冰淇淋完成签到,获得积分10
4秒前
犹豫梨愁完成签到,获得积分10
4秒前
tianji完成签到,获得积分10
11秒前
旋转蒸发发布了新的文献求助10
11秒前
廉锦枫完成签到,获得积分10
12秒前
阿信必发JACS应助大力可冥采纳,获得10
14秒前
领导范儿应助kehan采纳,获得10
16秒前
tangsuyun完成签到,获得积分20
18秒前
19秒前
qaz123完成签到,获得积分10
20秒前
隐形曼青应助超帅采纳,获得10
21秒前
洁净怜寒完成签到,获得积分10
22秒前
yihhhhhhh完成签到 ,获得积分10
24秒前
活泼半凡完成签到 ,获得积分10
24秒前
无语的从云完成签到,获得积分10
26秒前
许南北发布了新的文献求助10
26秒前
28秒前
上官若男应助Dee采纳,获得10
28秒前
saxg_hu完成签到,获得积分10
29秒前
tangsuyun关注了科研通微信公众号
33秒前
烟花应助kakaka采纳,获得10
34秒前
intangible发布了新的文献求助10
35秒前
Sarah完成签到 ,获得积分10
35秒前
zly完成签到,获得积分10
38秒前
39秒前
40秒前
端端仔发布了新的文献求助10
44秒前
超帅发布了新的文献求助10
45秒前
涂上小张完成签到,获得积分10
49秒前
Justin驳回了嗯哼应助
51秒前
一与余完成签到,获得积分10
52秒前
lingzi1015完成签到,获得积分10
52秒前
52秒前
斯文败类应助许南北采纳,获得10
53秒前
xzy完成签到,获得积分10
54秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
山海经图录 李云中版 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3327851
求助须知:如何正确求助?哪些是违规求助? 2958033
关于积分的说明 8588573
捐赠科研通 2636253
什么是DOI,文献DOI怎么找? 1442882
科研通“疑难数据库(出版商)”最低求助积分说明 668411
邀请新用户注册赠送积分活动 655534