代谢工程
合成生物学
醋酸
电解
固碳
酵母
可再生能源
发酵
化学
生化工程
原材料
制浆造纸工业
生物化学
电解质
生物
有机化学
酶
计算生物学
光合作用
工程类
物理化学
生态学
电极
作者
Tingting Zheng,Menglu Zhang,Lianghuan Wu,Shuyuan Guo,Xiangjian Liu,Jiankang Zhao,Weiqing Xue,Jiawei Li,Chunxiao Liu,Xu Li,Qiu Jiang,Jun Bao,Jie Zeng,Tao Yu,Chuan Xia
出处
期刊:Nature Catalysis
[Springer Nature]
日期:2022-04-28
卷期号:5 (5): 388-396
被引量:206
标识
DOI:10.1038/s41929-022-00775-6
摘要
Upcycling of carbon dioxide (CO2) into value-added products represents a substantially untapped opportunity to tackle environmental issues and achieve a circular economy. Compared with easily available C1/C2 products, nevertheless, efficient and sustainable synthesis of energy-rich long-chain compounds from CO2 still remains a grand challenge. Here we describe a hybrid electro-biosystem, coupling spatially separate CO2 electrolysis with yeast fermentation, that efficiently converts CO2 to glucose with a high yield. We employ a nanostructured copper catalyst that can stably catalyse pure acetic acid production with a solid-electrolyte reactor. We then genetically engineer Saccharomyces cerevisiae to produce glucose in vitro from electro-generated acetic acid by deleting all defined hexokinase genes and overexpression of heterologous glucose-1-phosphatase. In addition, we showcase that the proposed platform can be easily extended to produce other products like fatty acids using CO2 as the carbon source. These results illuminate the tantalizing possibility of a renewable-electricity-driven manufacturing industry.
科研通智能强力驱动
Strongly Powered by AbleSci AI