Prediction of subsequent osteoporotic vertebral compression fracture on CT radiography via deep learning

椎体压缩性骨折 医学 射线照相术 断裂(地质) 接收机工作特性 骨质疏松症 椎体 卷积神经网络 入射(几何) 深度学习 放射科 椎骨 人工智能 计算机断层摄影术 核医学 外科 数学 计算机科学 内科学 地质学 岩土工程 几何学
作者
Xiao Hu,Yanjing Zhu,Yadong Qian,Ruiqi Huang,Shuai Yin,Zhili Zeng,Ning Xie,Bin Ma,Yan Yu,Qing Zhao,Zhourui Wu,Jianjie Wang,Wei Xu,Yilong Ren,Chen Li,Rongrong Zhu,Liming Cheng
出处
期刊:View [Wiley]
卷期号:3 (6) 被引量:14
标识
DOI:10.1002/viw.20220012
摘要

Abstract Combination of computed tomography (CT) radiography and deep learning to predict subsequent osteoporotic vertebral compression fracture (OVCF) has not been reported. To do so, we analyzed retrospectively CT images from 103 patients who experienced twice OVCF in Tongji Hospital from 2011 to 2022. Meanwhile, CT images from 70 age‐matched osteoporotic patients without vertebral fracture were used as the negative control. Convolutional neural network was used for classification and the Adam optimizer combining the momentum and exponentially weighted moving average gradients methods were used to update the weights of the networks. In the prediction model, we split 80% data of each type of the patient as the training group, while the other 20% was held as the independent testing group. We found that the number of subsequent fracture in women is higher than that in men (81 vs. 22). Additionally, the incidence rate of adjacent vertebral fracture is higher than that of remote vertebral fracture (64.1 vs. 35.9%), while the onset time of the former was 11.9 ± 12.8 months, significantly less than 22.3 ± 18.2 months of the latter ( p < .001). For the prediction of subsequent fracture, our model attained .839 of accuracy and .883 of receiver operating characteristic–area under curve on the whole testing dataset. Furthermore, our model gained .867 and .719 of accuracy on the single‐class testing dataset separated from the former, .817 of accuracy on the independent test. In conclusion, we managed to generate a deep learning‐based model, which is able to predict subsequent OVCF in a precise and unbiased way just using CT images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
krathhong完成签到 ,获得积分10
6秒前
LANER完成签到 ,获得积分10
7秒前
Voskov发布了新的文献求助10
8秒前
刻苦大门完成签到 ,获得积分10
9秒前
李浩应助搞怪酒窝采纳,获得10
9秒前
宫宛儿完成签到,获得积分10
10秒前
orixero应助xusuizi采纳,获得10
11秒前
共享精神应助大龙哥886采纳,获得10
11秒前
broycn发布了新的文献求助10
11秒前
13秒前
14秒前
15秒前
魔幻安筠发布了新的文献求助10
16秒前
18秒前
酷波er应助稳重的豌豆采纳,获得10
23秒前
23秒前
xusuizi发布了新的文献求助10
27秒前
大龙哥886发布了新的文献求助10
29秒前
高贵紫丝发布了新的文献求助20
32秒前
王大宝宝宝完成签到 ,获得积分10
32秒前
潇洒友蕊完成签到 ,获得积分10
33秒前
小蘑菇应助柳香芦采纳,获得10
36秒前
酷酷亦凝发布了新的文献求助30
37秒前
41秒前
Sun_Chen完成签到,获得积分10
42秒前
斯文败类应助Acane采纳,获得10
44秒前
44秒前
赘婿应助tian采纳,获得10
44秒前
研友_Z7XlX8完成签到,获得积分10
45秒前
柳香芦发布了新的文献求助10
48秒前
科研通AI2S应助科研通管家采纳,获得10
49秒前
科研通AI2S应助科研通管家采纳,获得10
49秒前
不配.应助科研通管家采纳,获得10
49秒前
51秒前
Pattis完成签到 ,获得积分10
51秒前
顺利觅松完成签到,获得积分10
54秒前
57秒前
平凡的一天完成签到,获得积分10
57秒前
58秒前
高分求助中
Востребованный временем 2500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
The Restraining Hand: Captivity for Christ in China 500
Encyclopedia of Mental Health Reference Work 400
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Mercury and Silver Mining in the Colonial Atlantic 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3374102
求助须知:如何正确求助?哪些是违规求助? 2991160
关于积分的说明 8744209
捐赠科研通 2674879
什么是DOI,文献DOI怎么找? 1465388
科研通“疑难数据库(出版商)”最低求助积分说明 677841
邀请新用户注册赠送积分活动 669411